Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Keep getting an error on macOS when trying to use Passkeys to login
I keep getting the following error when trying to run Passkey sign in on macOS. Told not to present authorization sheet: Error Domain=com.apple.AuthenticationServicesCore.AuthorizationError Code=1 "(null)" ASAuthorizationController credential request failed with error: Error Domain=com.apple.AuthenticationServices.AuthorizationError Code=1004 "(null)" This is the specific error. Application with identifier a is not associated with domain b I have config the apple-app-site-association link and use ?mode=developer Could there be any reason for this?
0
0
245
Sep ’25
The file “Desktop” couldn’t be opened.
hey everyone.!! In one of my macOS projects I am trying to fetch the files and folders available on "Desktop" and "Document" folder and trying to showing it on collection view inside the my project, but when I try to fetch the files and folder of desktop and document, I am not able to fetch it. But if i try it by setting the entitlements False, I am able to fetch it. If any have face the similar issue, or have an alternative it please suggest. NOTE:- I have tried implementing it using NSOpenPanel and it works, but it lowers the user experience.
0
0
466
Jan ’25
Fraud prevention using Device Check when publishing multiple apps
I would like to confirm about fraud prevention using Device Check when publishing multiple apps. If the Team ID and Key ID are the same, will the values be shared across all apps with Device Check? With Device Check, only two keys can be created per developer account, and these two are primarily intended for key renewal in case of a leak, rather than for assigning different keys to each app, correct? If both 1 and 2 are correct, does that mean that Device Check should not be used to manage "one-time-only rewards per device" when offering them across multiple apps? Thank you very much for your confirmation.
0
0
176
Apr ’25
api and data collection app stroe connect
I added a feature to my app that retrieves only app settings (no personal data) from my API hosted on Cloudflare Workers. The app does not send, collect, track, or share any user data, and I do not store or process any personal information. Technical details such as IP address, user agent, and device information may be automatically transmitted as part of the internet protocol when the request is made, but my app does not log or use them. Cloudflare may collect this information. Question: Does this count as “data collection” for App Store Connect purposes, or can I select “No Data Collected”?
0
0
425
Aug ’25
Custom Default Browser Not Receiving ASWebAuthenticationSession SSO After Launching Safari/Chrome
Hi Apple Developer Support, I’m building a macOS app that acts as a default browser. I can confirm that I can set it correctly through System Settings → Default Web Browser. The app implements ASWebAuthenticationSessionWebBrowserSessionHandling to intercept Single Sign-On (SSO) flows. To handle requests, it presents SSO pages in a WKWebView embedded in a window that this app creates and owns - this works perfectly for the initial login flow. However, after I close my WebView window and then launch Safari or Chrome, any subsequent SSO requests open in the newly-launched browser instead of my custom browser, even though it remains selected as the default in System Settings. I’d appreciate any insight on why the system “hands off” to Safari/Chrome in this scenario, and how I can keep my app consistently intercepting all ASWebAuthenticationSession requests. Here are the steps that break down the issue: Launch & confirm that the custom default browser app is the default browser in System Settings → Default Web Browser. Trigger SSO (e.g., try to log in to Slack). App’s WKWebView appears, and the SSO UI works end-to-end. Close the WebView window (I have windowShouldClose callback where I cancel the pending session). Manually launch Safari or Chrome. Trigger SSO again. Observed behaviour: the login URL opens in Safari/Chrome. I am using macOS 15.3.2
0
1
128
May ’25
SecItem: Pitfalls and Best Practices
I regularly help developers with keychain problems, both here on DevForums and for my Day Job™ in DTS. Over the years I’ve learnt a lot about the API, including many pitfalls and best practices. This post is my attempt to collect that experience in one place. If you have questions or comments about any of this, put them in a new thread and apply the Security tag so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" SecItem: Pitfalls and Best Practices It’s just four functions, how hard can it be? The SecItem API seems very simple. After all, it only has four function calls, how hard can it be? In reality, things are not that easy. Various factors contribute to making this API much trickier than it might seem at first glance. This post explains some of the keychain’s pitfalls and then goes on to explain various best practices. Before reading this, make sure you understand the fundamentals by reading its companion post, SecItem: Fundamentals. Pitfalls Lets start with some common pitfalls. Queries and Uniqueness Constraints The relationship between query dictionaries and uniqueness constraints is a major source of problems with the keychain API. Consider code like this: var copyResult: CFTypeRef? = nil let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecAttrGeneric: Data("SecItemHints".utf8), ] as NSMutableDictionary let err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { query[kSecValueData] = Data("opendoor".utf8) let err2 = SecItemAdd(query, nil) if err2 == errSecDuplicateItem { fatalError("… can you get here? …") } } Can you get to the fatal error? At first glance this might not seem possible because you’ve run your query and it’s returned errSecItemNotFound. However, the fatal error is possible because the query contains an attribute, kSecAttrGeneric, that does not contribute to the uniqueness. If the keychain contains a generic password whose service (kSecAttrService) and account (kSecAttrAccount) attributes match those supplied but whose generic (kSecAttrGeneric) attribute does not, the SecItemCopyMatching calls will return errSecItemNotFound. However, for a generic password item, of the attributes shown here, only the service and account attributes are included in the uniqueness constraint. If you try to add an item where those attributes match an existing item, the add will fail with errSecDuplicateItem even though the value of the generic attribute is different. The take-home point is that that you should study the attributes that contribute to uniqueness and use them in a way that’s aligned with your view of uniqueness. See the Uniqueness section of SecItem: Fundamentals for a link to the relevant documentation. Erroneous Attributes Each keychain item class supports its own specific set of attributes. For information about the attributes supported by a given class, see SecItem: Fundamentals. I regularly see folks use attributes that aren’t supported by the class they’re working with. For example, the kSecAttrApplicationTag attribute is only supported for key items (kSecClassKey). Using it with a certificate item (kSecClassCertificate) will cause, at best, a runtime error and, at worst, mysterious bugs. This is an easy mistake to make because: The ‘parameter block’ nature of the SecItem API means that the compiler won’t complain if you use an erroneous attribute. On macOS, the shim that connects to the file-based keychain ignores unsupported attributes. Imagine you want to store a certificate for a particular user. You might write code like this: let err = SecItemAdd([ kSecClass: kSecClassCertificate, kSecAttrApplicationTag: Data(name.utf8), kSecValueRef: cert, ] as NSDictionary, nil) The goal is to store the user’s name in the kSecAttrApplicationTag attribute so that you can get back their certificate with code like this: let err = SecItemCopyMatching([ kSecClass: kSecClassCertificate, kSecAttrApplicationTag: Data(name.utf8), kSecReturnRef: true, ] as NSDictionary, &copyResult) On iOS, and with the data protection keychain on macOS, both calls will fail with errSecNoSuchAttr. That makes sense, because the kSecAttrApplicationTag attribute is not supported for certificate items. Unfortunately, the macOS shim that connects the SecItem API to the file-based keychain ignores extraneous attributes. This results in some very bad behaviour: SecItemAdd works, ignoring kSecAttrApplicationTag. SecItemCopyMatching ignores kSecAttrApplicationTag, returning the first certificate that it finds. If you only test with a single user, everything seems to work. But, later on, when you try your code with multiple users, you might get back the wrong result depending on the which certificate the SecItemCopyMatching call happens to discover first. Ouch! Context Matters Some properties change behaviour based on the context. The value type properties are the biggest offender here, as discussed in the Value Type Subtleties section of SecItem: Fundamentals. However, there are others. The one that’s bitten me is kSecMatchLimit: In a query and return dictionary its default value is kSecMatchLimitOne. If you don’t supply a value for kSecMatchLimit, SecItemCopyMatching returns at most one item that matches your query. In a pure query dictionary its default value is kSecMatchLimitAll. For example, if you don’t supply a value for kSecMatchLimit, SecItemDelete will delete all items that match your query. This is a lesson that, once learnt, is never forgotten! Note Although this only applies to the data protection keychain. If you’re on macOS and targeting the file-based keychain, kSecMatchLimit always defaults to kSecMatchLimitOne (r. 105800863). Fun times! Digital Identities Aren’t Real A digital identity is the combination of a certificate and the private key that matches the public key within that certificate. The SecItem API has a digital identity keychain item class, namely kSecClassIdentity. However, the keychain does not store digital identities. When you add a digital identity to the keychain, the system stores its components, the certificate and the private key, separately, using kSecClassCertificate and kSecClassKey respectively. This has a number of non-obvious effects: Adding a certificate can ‘add’ a digital identity. If the new certificate happens to match a private key that’s already in the keychain, the keychain treats that pair as a digital identity. Likewise when you add a private key. Similarly, removing a certificate or private key can ‘remove’ a digital identity. Adding a digital identity will either add a private key, or a certificate, or both, depending on what’s already in the keychain. Removing a digital identity removes its certificate. It might also remove the private key, depending on whether that private key is used by a different digital identity. The system forms a digital identity by matching the kSecAttrApplicationLabel (klbl) attribute of the private key with the kSecAttrPublicKeyHash (pkhh) attribute of the certificate. If you add both items to the keychain and the system doesn’t form an identity, check the value of these attributes. For more information the key attributes, see SecItem attributes for keys. Keys Aren’t Stored in the Secure Enclave Apple platforms let you protect a key with the Secure Enclave (SE). The key is then hardware bound. It can only be used by that specific SE [1]. Earlier versions of the Protecting keys with the Secure Enclave article implied that SE-protected keys were stored in the SE itself. This is not true, and it’s caused a lot of confusion. For example, I once asked the keychain team “How much space does the SE have available to store keys?”, a question that’s complete nonsense once you understand how this works. In reality, SE-protected keys are stored in the standard keychain database alongside all your other keychain items. The difference is that the key is wrapped in such a way that only the SE can use it. So, the key is protected by the SE, not stored in the SE. A while back we updated the docs to clarify this point but the confusion persists. [1] Technically it’s that specific iteration of that specific SE. If you erase the device then the key material needed to use the key is erased and so the key becomes permanently useless. This is the sort of thing you’ll find explained in Apple Platform Security. Careful With that Shim, Mac Developer As explained in TN3137 On Mac keychain APIs and implementations, macOS has a shim that connects the SecItem API to either the data protection keychain or the file-based keychain depending on the nature of the request. That shim has limitations. Some of those are architectural but others are simply bugs in the shim. For some great examples, see the Investigating Complex Attributes section below. The best way to avoid problems like this is to target the data protection keychain. If you can’t do that, try to avoid exploring the outer reaches of the SecItem API. If you encounter a case that doesn’t make sense, try that same case with the data protection keychain. If it works there but fails with the file-based keychain, please do file a bug against the shim. It’ll be in good company. Here’s some known issues with the shim: It ignores unsupported attributes. See Erroneous Attributes, above, for more background on that. The shim can fan out to both the data protection and the file-based keychain. In that case it has to make a policy decision about how to handle errors. This results in some unexpected behaviour (r. 143405965). For example, if you call SecItemCopyMatching while the keychain is locked, the data protection keychain will fail with errSecInteractionNotAllowed (-25308). OTOH, it’s possible to query for the presence of items in the file-based keychain even when it’s locked. If you do that and there’s no matching item, the file-based keychain fails with errSecItemNotFound (-25300). When the shim gets these conflicting errors, it chooses to return the latter. Whether this is right or wrong depends on your perspective, but it’s certainly confusing, especially if you’re coming at this from the iOS side. If you call SecItemDelete without specifying a match limit (kSecMatchLimit), the data protection keychain deletes all matching items, whereas the file-based keychain just deletes a single match (r. 105800863). While these issue have all have bug numbers, there’s no guarantee that any of them will be fixed. Fixing bugs like this is tricky because of binary compatibility concerns. Add-only Attributes Some attributes can only be set when you add an item. These attributes are usually associated with the scope of the item. For example, to protect an item with the Secure Enclave, supply the kSecAttrAccessControl attribute to the SecItemAdd call. Once you do that, however, you can’t change the attribute. Calling SecItemUpdate with a new kSecAttrAccessControl won’t work. Lost Keychain Items A common complaint from developers is that a seemingly minor update to their app has caused it to lose all of its keychain items. Usually this is caused by one of two problems: Entitlement changes Query dictionary confusion Access to keychain items is mediated by various entitlements, as described in Sharing access to keychain items among a collection of apps. If the two versions of your app have different entitlements, one version may not be able to ‘see’ items created by the other. Imagine you have an app with an App ID of SKMME9E2Y8.com.example.waffle-varnisher. Version 1 of your app is signed with the keychain-access-groups entitlement set to [ SKMME9E2Y8.groupA, SKMME9E2Y8.groupB ]. That makes its keychain access group list [ SKMME9E2Y8.groupA, SKMME9E2Y8.groupB, SKMME9E2Y8.com.example.waffle-varnisher ]. If this app creates a new keychain item without specifying kSecAttrAccessGroup, the system places the item into SKMME9E2Y8.groupA. If version 2 of your app removes SKMME9E2Y8.groupA from the keychain-access-groups, it’ll no longer be able to see the keychain items created by version 1. You’ll also see this problem if you change your App ID prefix, as described in App ID Prefix Change and Keychain Access. IMPORTANT When checking for this problem, don’t rely on your .entitlements file. There are many steps between it and your app’s actual entitlements. Rather, run codesign to dump the entitlements of your built app: % codesign -d --entitlements - /path/to/your.app Lost Keychain Items, Redux Another common cause of lost keychain items is confusion about query dictionaries, something discussed in detail in this post and SecItem: Fundamentals. If SecItemCopyMatching isn’t returning the expected item, add some test code to get all the items and their attributes. For example, to dump all the generic password items, run code like this: func dumpGenericPasswords() throws { let itemDicts = try secCall { SecItemCopyMatching([ kSecClass: kSecClassGenericPassword, kSecMatchLimit: kSecMatchLimitAll, kSecReturnAttributes: true, ] as NSDictionary, $0) } as! [[String: Any]] print(itemDicts) } Then compare each item’s attributes against the attributes you’re looking for to see why there was no match. Data Protection and Background Execution Keychain items are subject to data protection. Specifically, an item may or may not be accessible depending on whether specific key material is available. For an in-depth discussion of how this works, see Apple Platform Security. Note This section focuses on iOS but you’ll see similar effects on all Apple platforms. On macOS specifically, the contents of this section only apply to the data protection keychain. The keychain supports three data protection levels: kSecAttrAccessibleWhenUnlocked kSecAttrAccessibleAfterFirstUnlock kSecAttrAccessibleAlways Note There are additional data protection levels, all with the ThisDeviceOnly suffix. Understanding those is not necessary to understanding this pitfall. Each data protection level describes the lifetime of the key material needed to work with items protected in that way. Specifically: The key material needed to work with a kSecAttrAccessibleWhenUnlocked item comes and goes as the user locks and unlocks their device. The key material needed to work with a kSecAttrAccessibleAfterFirstUnlock item becomes available when the device is first unlocked and remains available until the device restarts. The default data protection level is kSecAttrAccessibleWhenUnlocked. If you add an item to the keychain and don’t specify a data protection level, this is what you get [1]. To specify a data protection level when you add an item to the keychain, apply the kSecAttrAccessible attribute. Alternatively, embed the access level within a SecAccessControl object and apply that using the kSecAttrAccessControl attribute. IMPORTANT It’s best practice to set these attributes when you add the item and then never update them. See Add-only Attributes, above, for more on that. If you perform an operation whose data protection is incompatible with the currently available key material, that operation fails with errSecInteractionNotAllowed [2]. There are four fundamental keychain operations, discussed in the SecItem: Fundamentals, and each interacts with data protection in a different way: Copy — If you attempt to access a keychain item whose key material is unavailable, SecItemCopyMatching fails with errSecInteractionNotAllowed. This is an obvious result; the whole point of data protection is to enforce this security policy. Add — If you attempt to add a keychain item whose key material is unavailable, SecItemAdd fails with errSecInteractionNotAllowed. This is less obvious. The reason why this fails is that the system needs the key material to protect (by encryption) the keychain item, and it can’t do that if if that key material isn’t available. Update — If you attempt to update a keychain item whose key material is unavailable, SecItemUpdate fails with errSecInteractionNotAllowed. This result is an obvious consequence of the previous result. Delete — Deleting a keychain item, using SecItemDelete, doesn’t require its key material, and thus a delete will succeed when the item is otherwise unavailable. That last point is a significant pitfall. I regularly see keychain code like this: Read an item holding a critical user credential. If that works, use that credential. If it fails, delete the item and start from a ‘factory reset’ state. The problem is that, if your code ends up running in the background unexpectedly, step 1 fails with errSecInteractionNotAllowed and you turn around and delete the user’s credential. Ouch! Note Even if you didn’t write this code, you might have inherited it from a keychain wrapper library. See *Think Before Wrapping, below. There are two paths forward here: If you don’t expect this code to work in the background, check for the errSecInteractionNotAllowed error and non-destructively cancel the operation in that case. If you expect this code to be running in the background, switch to a different data protection level. WARNING For the second path, the most obvious fix is to move from kSecAttrAccessibleWhenUnlocked to kSecAttrAccessibleAfterFirstUnlock. However, this is not a panacea. It’s possible that your app might end up running before first unlock [3]. So, if you choose the second path, you must also make sure to follow the advice for the first path. You can determine whether the device is unlocked using the isProtectedDataAvailable property and its associated notifications. However, it’s best not to use this property as part of your core code, because such preflighting is fundamentally racy. Rather, perform the operation and handle the error gracefully. It might make sense to use isProtectedDataAvailable property as part of debugging, logging, and diagnostic code. [1] For file data protection there’s an entitlement (com.apple.developer.default-data-protection) that controls the default data protection level. There’s no such entitlement for the keychain. That’s actually a good thing! In my experience the file data protection entitlement is an ongoing source of grief. See this thread if you’re curious. [2] This might seem like an odd error but it’s actually pretty reasonable: The operation needs some key material that’s currently unavailable. Only a user action can provide that key material. But the data protection keychain will never prompt the user to unlock their device. Thus you get an error instead. [3] iOS generally avoids running third-party code before first unlock, but there are circumstances where that can happen. The obvious legitimate example of this is a VoIP app, where the user expects their phone to ring even if they haven’t unlocked it since the last restart. There are also other less legitimate examples of this, including historical bugs that caused apps to launch in the background before first unlock. Best Practices With the pitfalls out of the way, let’s talk about best practices. Less Painful Dictionaries I look at a lot of keychain code and it’s amazing how much of it is way more painful than it needs to be. The biggest offender here is the dictionaries. Here are two tips to minimise the pain. First, don’t use CFDictionary. It’s seriously ugly. While the SecItem API is defined in terms of CFDictionary, you don’t have to work with CFDictionary directly. Rather, use NSDictionary and take advantage of the toll-free bridge. For example, consider this CFDictionary code: CFTypeRef keys[4] = { kSecClass, kSecAttrService, kSecMatchLimit, kSecReturnAttributes, }; static const int kTen = 10; CFNumberRef ten = CFNumberCreate(NULL, kCFNumberIntType, &kTen); CFAutorelease(ten); CFTypeRef values[4] = { kSecClassGenericPassword, CFSTR("AYS"), ten, kCFBooleanTrue, }; CFDictionaryRef query = CFDictionaryCreate( NULL, keys, values, 4, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks ); Note This might seem rather extreme but I’ve literally seen code like this, and worse, while helping developers. Contrast this to the equivalent NSDictionary code: NSDictionary * query = @{ (__bridge NSString *) kSecClass: (__bridge NSString *) kSecClassGenericPassword, (__bridge NSString *) kSecAttrService: @"AYS", (__bridge NSString *) kSecMatchLimit: @10, (__bridge NSString *) kSecReturnAttributes: @YES, }; Wow, that’s so much better. Second, if you’re working in Swift, take advantage of its awesome ability to create NSDictionary values from Swift dictionary literals. Here’s the equivalent code in Swift: let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecMatchLimit: 10, kSecReturnAttributes: true, ] as NSDictionary Nice! Avoid Reusing Dictionaries I regularly see folks reuse dictionaries for different SecItem calls. For example, they might have code like this: var copyResult: CFTypeRef? = nil let dict = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecReturnData: true, ] as NSMutableDictionary var err = SecItemCopyMatching(dict, &copyResult) if err == errSecItemNotFound { dict[kSecValueData] = Data("opendoor".utf8) err = SecItemAdd(dict, nil) } This specific example will work, but it’s easy to spot the logic error. kSecReturnData is a return type property and it makes no sense to pass it to a SecItemAdd call whose second parameter is nil. I’m not sure why folks do this. I think it’s because they think that constructing dictionaries is expensive. Regardless, this pattern can lead to all sorts of weird problems. For example, it’s the leading cause of the issue described in the Queries and the Uniqueness Constraints section, above. My advice is that you use a new dictionary for each call. That prevents state from one call accidentally leaking into a subsequent call. For example, I’d rewrite the above as: var copyResult: CFTypeRef? = nil let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecReturnData: true, ] as NSMutableDictionary var err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { let add = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecValueData: Data("opendoor".utf8), ] as NSMutableDictionary err = SecItemAdd(add, nil) } It’s a bit longer, but it’s much easier to track the flow. And if you want to eliminate the repetition, use a helper function: func makeDict() -> NSMutableDictionary { [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", ] as NSMutableDictionary } var copyResult: CFTypeRef? = nil let query = makeDict() query[kSecReturnData] = true var err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { let add = makeDict() query[kSecValueData] = Data("opendoor".utf8) err = SecItemAdd(add, nil) } Think Before Wrapping A lot of folks look at the SecItem API and immediately reach for a wrapper library. A keychain wrapper library might seem like a good idea but there are some serious downsides: It adds another dependency to your project. Different subsystems within your project may use different wrappers. The wrapper can obscure the underlying API. Indeed, its entire raison d’être is to obscure the underlying API. This is problematic if things go wrong. I regularly talk to folks with hard-to-debug keychain problems and the conversation goes something like this: Quinn: What attributes do you use in the query dictionary? J R Developer: What’s a query dictionary? Quinn: OK, so what error are you getting back? J R Developer: It throws WrapperKeychainFailedError. That’s not helpful )-: If you do use a wrapper, make sure it has diagnostic support that includes the values passed to and from the SecItem API. Also make sure that, when it fails, it returns an error that includes the underlying keychain error code. These benefits will be particularly useful if you encounter a keychain problem that only shows up in the field. Wrappers must choose whether to be general or specific. A general wrapper may be harder to understand than the equivalent SecItem calls, and it’ll certainly contain a lot of complex code. On the other hand, a specific wrapper may have a model of the keychain that doesn’t align with your requirements. I recommend that you think twice before using a keychain wrapper. Personally I find the SecItem API relatively easy to call, assuming that: I use the techniques shown in Less Painful Dictionaries, above, to avoid having to deal with CFDictionary. I use my secCall(…) helpers to simplify error handling. For the code, see Calling Security Framework from Swift. If you’re not prepared to take the SecItem API neat, consider writing your own wrapper, one that’s tightly focused on the requirements of your project. For example, in my VPN apps I use the wrapper from this post, which does exactly what I need in about 100 lines of code. Prefer to Update Of the four SecItem functions, SecItemUpdate is the most neglected. Rather than calling SecItemUpdate I regularly see folks delete and then re-add the item. This is a shame because SecItemUpdate has some important benefits: It preserves persistent references. If you delete and then re-add the item, you get a new item with a new persistent reference. It’s well aligned with the fundamental database nature of the keychain. It forces you to think about which attributes uniquely identify your item and which items can be updated without changing the item’s identity. Understand These Key Attributes Key items have a number of attributes that are similarly named, and it’s important to keep them straight. I created a cheat sheet for this, namely, SecItem attributes for keys. You wouldn’t believe how often I consult this! Investigating Complex Attributes Some attributes have values where the format is not obvious. For example, the kSecAttrIssuer attributed is documented as: The corresponding value is of type CFData and contains the X.500 issuer name of a certificate. What exactly does that mean? If I want to search the keychain for all certificates issued by a specific certificate authority, what value should I supply? One way to figure this out is to add a certificate to the keychain, read the attributes back, and then dump the kSecAttrIssuer value. For example: let cert: SecCertificate = … let attrs = try secCall { SecItemAdd([ kSecValueRef: cert, kSecReturnAttributes: true, ] as NSDictionary, $0) } as! [String: Any] let issuer = attrs[kSecAttrIssuer as String] as! NSData print((issuer as NSData).debugDescription) // prints: <3110300e 06035504 030c074d 6f757365 4341310b 30090603 55040613 024742> Those bytes represent the contents of a X.509 Name ASN.1 structure with DER encoding. This is without the outer SEQUENCE element, so if you dump it as ASN.1 you’ll get a nice dump of the first SET and then a warning about extra stuff at the end of the file: % xxd issuer.asn1 00000000: 3110 300e 0603 5504 030c 074d 6f75 7365 1.0...U....Mouse 00000010: 4341 310b 3009 0603 5504 0613 0247 42 CA1.0...U....GB % dumpasn1 -p issuer.asn1 SET { SEQUENCE { OBJECT IDENTIFIER commonName (2 5 4 3) UTF8String 'MouseCA' } } Warning: Further data follows ASN.1 data at position 18. Note For details on the Name structure, see section 4.1.2.4 of RFC 5280. Amusingly, if you run the same test against the file-based keychain you’ll… crash. OK, that’s not amusing. It turns out that the code above doesn’t work when targeting the file-based keychain because SecItemAdd doesn’t return a dictionary but rather an array of dictionaries (r. 21111543). Once you get past that, however, you’ll see it print: <301f3110 300e0603 5504030c 074d6f75 73654341 310b3009 06035504 06130247 42> Which is different! Dumping it as ASN.1 shows that it’s the full Name structure, including the outer SEQUENCE element: % xxd issuer-file-based.asn1 00000000: 301f 3110 300e 0603 5504 030c 074d 6f75 0.1.0...U....Mou 00000010: 7365 4341 310b 3009 0603 5504 0613 0247 seCA1.0...U....G 00000020: 42 B % dumpasn1 -p issuer-file-based.asn1 SEQUENCE { SET { SEQUENCE { OBJECT IDENTIFIER commonName (2 5 4 3) UTF8String 'MouseCA' } } SET { SEQUENCE { OBJECT IDENTIFIER countryName (2 5 4 6) PrintableString 'GB' } } } This difference in behaviour between the data protection and file-based keychains is a known bug (r. 26391756) but in this case it’s handy because the file-based keychain behaviour makes it easier to understand the data protection keychain behaviour. Import, Then Add It’s possible to import data directly into the keychain. For example, you might use this code to add a certificate: let certData: Data = … try secCall { SecItemAdd([ kSecClass: kSecClassCertificate, kSecValueData: certData, ] as NSDictionary, nil) } However, it’s better to import the data and then add the resulting credential reference. For example: let certData: Data = … let cert = try secCall { SecCertificateCreateWithData(nil, certData as NSData) } try secCall { SecItemAdd([ kSecValueRef: cert, ] as NSDictionary, nil) } There are two advantages to this: If you get an error, you know whether the problem was with the import step or the add step. It ensures that the resulting keychain item has the correct attributes. This is especially important for keys. These can be packaged in a wide range of formats, so it’s vital to know whether you’re interpreting the key data correctly. I see a lot of code that adds key data directly to the keychain. That’s understandable because, back in the day, this was the only way to import a key on iOS. Fortunately, that’s not been the case since the introduction of SecKeyCreateWithData in iOS 10 and aligned releases. For more information about importing keys, see Importing Cryptographic Keys. App Groups on the Mac Sharing access to keychain items among a collection of apps explains that three entitlements determine your keychain access: keychain-access-groups application-identifier (com.apple.application-identifier on macOS) com.apple.security.application-groups In the discussion of com.apple.security.application-groups it says: Starting in iOS 8, the array of strings given by this entitlement also extends the list of keychain access groups. That’s true, but it’s also potentially misleading. This affordance only works on iOS and its child platforms. It doesn’t work on macOS. That’s because app groups work very differently on macOS than they do on iOS. For all the details, see App Groups: macOS vs iOS: Working Towards Harmony. However, the take-home point is that, when you use the data protection keychain on macOS, your keychain access group list is built from keychain-access-groups and com.apple.application-identifier. Revision History 2025-06-29 Added the Data Protection and Background Execution section. Made other minor editorial changes. 2025-02-03 Added another specific example to the Careful With that Shim, Mac Developer section. 2025-01-29 Added somes specific examples to the Careful With that Shim, Mac Developer section. 2025-01-23 Added the Import, Then Add section. 2024-08-29 Added a discussion of identity formation to the Digital Identities Aren’t Real section. 2024-04-11 Added the App Groups on the Mac section. 2023-10-25 Added the Lost Keychain Items and Lost Keychain Items, Redux sections. 2023-09-22 Made minor editorial changes. 2023-09-12 Fixed various bugs in the revision history. Added the Erroneous Attributes section. 2023-02-22 Fixed the link to the VPNKeychain post. Corrected the name of the Context Matters section. Added the Investigating Complex Attributes section. 2023-01-28 First posted.
0
0
3.8k
Jun ’25
Shared Device Mode iPad Passcode Reset Duration
I was wondering if anyone had experience with Managed Device Profiles on iPad to be able to answer a quick question regarding passcode reset. We are using Microsoft Intune to manage our fleet of iPads that our store employees will use on an Ad-Hoc basis. When a user logs into an iPad for the day, we are issuing a resetPasscode command to the MicrosoftGraph specifying that device ID. We are getting a successful response to the iPad itself. But the device is allowing the user 1 hour of free time to dismiss the reset passcode dialogue. Which enables them to use the iPad unprotected for up to an hour, which is not what we want. Does anyone know of any way to force the user to select a passcode immediately? I know this is a device side restriction. But is there anything apple can do to help us in this instance, since our MDM profile can't close this time window on the Intune side?
0
0
339
Jan ’25
why prepareInterfaceToProvideCredential does call
we develop extension "Autofill Credential Provider" function for passkey. 1.first step registe passkey 2.second step authenticate with passkey step 1 &amp; step 2 has finished and run success with provideCredentialWithoutUserInteraction. But we want to prepare our interface for use to input password and select passkey what the want. however the func prepareInterfaceToProvideCredential in ASCredentialProviderViewController does call? what i missed? how can i do it?
0
0
130
Jul ’25
Apple SignIn not working for an account that was deleted.
I was testing an app with AppleSignIn with a Firebase backend and wanted to test account deletion functionality. I was unaware of needing to revoke the token with Apple before proceeding with account deletion. Now, when I try to create a new account with the same appleId email, the token passed to Firebase is invalid and the login fails. As such, I am blocked from testing my app with authenticated Apple users, so I'm trying to understand what the workaround is. Thanks in advance!
0
0
389
Jan ’25
Sign in with Apple
Hey there, I’m currently exploring the possibility of integrating Sign in with Apple into my iOS app and backend. Regarding the iOS app, I’ve read that when a user is signed in, you always need to call getCredentialState on the app’s launch. Is this true? If so, how is it possible to sign the user out then? I intend to incorporate SwiftData and CloudKit into my application. In light of this, I’m curious about your approach to user management. Specifically, I’m wondering if you would store the user’s data in a Redis database after successful authentication on the backend. Or, would you separate the user data and save it using SwiftData/ CloudKit?
0
1
383
Feb ’25
Why doesn't FinanceKit return transaction location?
Pretty much the headline. the func transactionHistory() needs to return the transaction location. This seems so rudimentary, yet it is missing from the docs. Unless I'm missing something, please add this feature or point me in the right direction. Alternatively, is there a way for my app to get notified of the transaction immediately as it happens? I have to get transactions historically which leaves me with no way to determine where they happened in the past.
0
0
289
Jan ’25
Can't get user info more than once upon signin ?
Hi, I know it's been discussed before, but I'm testing the Sign in with Apple feature, and I only get the user info on the first try. Now, I know that you're supposed to go to the account settings, and look for the list of accounts that you used your Apple account to sign in with, and it used to work a few months back. But for the last few weeks I haven't been able to get the user info, even after deleting the entry from my Sign In With Apple app list. Has there been a recent change to Apple security policy that prevents such a move from working ? Or am I doing something wrong ? Thank you
0
0
310
Feb ’25
App Attest API – "DCErrorInvalidKey 3" after App or OS Update
Hi everyone, We are using the App Attest API to securely transition users to our new system. As part of this, we store the Key ID of the attestation key for each user to verify their identity later. However, we’ve noticed that some users are encountering the error “DCErrorInvalidKey 3” when calling generateAssertion. Importantly, the key was previously successfully attested, and generateAssertion has worked before for these users. Our questions: Could this error be caused by an app or iOS update? Is it problematic to link an attestation key's Key ID directly to a user, or are there scenarios where the key might change or become invalid? If there’s a way to mitigate this issue or recover affected users, what best practices would you recommend? Any help or shared experiences would be greatly appreciated! Thanks in advance.
0
4
198
Apr ’25
AASA not being fetched immediately upon app install
Hi Apple Devs, For our app, we utilize passkeys for account creation (not MFA). This is mainly for user privacy, as there is 0 PII associated with passkey account creation, but it additionally also satisfies the 4.8: Login Services requirement for the App Store. However, we're getting blocked in Apple Review. Because the AASA does not get fetched immediately upon app install, the reviewers are not able to create an account immediately via passkeys, and then they reject the build. I'm optimistic I can mitigate the above. But even if we pass Apple Review, this is a pretty catastrophic issue for user security and experience. There are reports that 5% of users cannot create passkeys immediately (https://developer.apple.com/forums/thread/756740). That is a nontrivial amount of users, and this large of an amount distorts how app developers design onboarding and authentication flows towards less secure experiences: App developers are incentivized to not require MFA setup on account creation because requiring it causes significant churn, which is bad for user security. If they continue with it anyways, for mitigation, developers are essentially forced to add in copy into their app saying something along the lines of "We have no ability to force Apple to fetch the config required to continue sign up, so try again in a few minutes, you'll just have to wait." You can't even implement a fallback method. There's no way to check if the AASA is available before launching the ASAuthorizationController so you can't mitigate a portion of users encountering an error!! Any app that wants to use the PRF extension to encrypt core functionality (again, good for user privacy) simply cannot exist because the app simply does not work for an unspecified amount of time for a nontrivial portion of users. It feels like a. Apple should provide a syscall API that we can call to force SWCD to verify the AASA or b. implement a config based on package name for the app store such that the installation will immediately include a verified AASA from Apple's CDN. Flicking the config on would require talking with Apple. If this existed, this entire class of error would go away. It feels pretty shocking that there isn't a mitigation in place for this already given that it incentivizes app developers to pursue strictly less secure and less private authentication practices.
0
0
356
Aug ’25
Issue to reset "Privacy & Security" permissions
Hello, I am working on a script to update an application which bundle ID changed. Only the bundle ID was modified; all other aspects remain unchanged. This application requires access to "Screen & System Audio Recording" permissions, which are currently granted to the old bundle ID. The script performs the following steps: launchctl bootout gui/$(id -u) /Library/LaunchAgents/com.my_agent_1.plist pkgutil --forget com.my_agent_1 tccutil reset All com.my_agent_1 rm /Library/LaunchAgents/com.my_agent_1.plist rm -rf </path/to/com_my_agent_1> installer -dumplog -allowUntrusted -pkg </path/to/com_my_agent_2.pkg> -target / ... When running steps #1-6 without a restart between steps #5 and #6, the old bundle ID (com.my_agent_1) remains visible in TCC.db (verified via SQL queries). Looks like this is the reason why "com.my_agent_2" is not automatically added to the permission list (requiring manual add). Moreover, "tccutil reset All com.my_agent_1" does not work anymore, the error: tccutil: No such bundle identifier "com.my_agent_1": The operation couldn’t be completed. (OSStatus error -10814.) Is there any way to completely clear the "Privacy & Security" permissions without requiring a system restart? Thank you a lot for your help in advance!
0
0
124
Jun ’25
Privacy manifest related deadlines - inconsistent communication by Apple
Please help me clarify the current situation regarding the necessity of a privacy manifest file in 3rd party SDKs. It would be nice to have a reply from someone working at Apple, to have a reliable answer. A quick summery of the events from last year https://developer.apple.com/support/third-party-SDK-requirements/ : "Starting in spring 2024, you must include the privacy manifest for any SDK listed below when you submit new apps in App Store Connect that include those SDKs, or when you submit an app update that adds one of the listed SDKs as part of the update." Last autumn, we started receiving warning emails from Apple after initiating app reviews, even when our apps did not have a newly added SDK: ITMS-91061: Missing privacy manifest - Starting November 12, 2024, if a new app includes a privacy-impacting SDK, or an app update adds a new privacy-impacting SDK, the SDK must include a privacy manifest file. Please contact the provider of the SDK that includes this file to get an updated SDK version with a privacy manifest. According to this warning message, app updates which do not contain any new SDKs are still not affected. Since then, at one point in time the deadline changed, as now we have February 12, 2025 in the privacy manifest documentation: https://developer.apple.com/documentation/bundleresources/adding-a-privacy-manifest-to-your-app-or-third-party-sdk However, this page does not contain any mention of the circumstances, it only states in general that apps you submit for review in App Store Connect must contain a valid privacy manifest file for a certain number of commonly used third-party SDKs. My questions Does the February deadline apply to every app update, even if they do not contain any newly added SDKs? Or does it still affect only the app updates "that adds one of the listed SDKs as part of the update." ? If the former, the 3rd party requirements page should be updated in my opinion. And if the latter, why does the documentation not contain this important piece of information? We have a basic product which then gets customised for the clients so we upload several different apps based on the same code with the same dependencies. How is it possible that during autumn, Apple sent ITMS-91061: Missing privacy manifest warnings for some of our apps, but did not send it for others? Does Apple not validate all the apps but only some of them randomly? Also, the warning still states that it should be relevant if "an app update adds a new privacy-impacting SDK", but that was not the case for us, we did not add anything newly to our apps - why did we even get these warnings then? Just in general: when the deadlines change, is there any channel where Apple communicates these, besides the warning emails? I did not see any posts on the Apple Developer site's News page about this February date, I just found it by accident. I don't even remember seeing a notice about the original November deadline, we just started receiving the email warnings without expecting them. Thank you in advance for anyone sharing an answer.
0
4
1.2k
Jan ’25
"Not authorized to send Apple events to Finder"
Hi, We are trying to open an application "xyz.app" It worked fine until 15.1.1 versions. But facing issues with 15.2 and 15.3 The application is working fine when we navigate to xyz.app/Contents/MacOS/ and run applet in this directory. But the error ""Not authorized to send Apple events to Finder"" occurs when we are trying to open the app directly. Could someone please help me understand what might be causing this issue and how to resolve it?
0
1
283
Feb ’25
Ajuda com identificação de usuário Apple nome email e Firebase
E aí pessoal, tudo certo? Estou desenvolvendo um app com React Native no front-end e Node.js no back-end, usando o Firebase como banco de dados (e possivelmente para autenticação também, dependendo da solução). Preciso implementar o "Sign in with Apple" e estou com algumas dúvidas em como integrar tudo isso. A ideia é: o usuário clica no botão "Entrar com a Apple" no app (React Native), o backend (Node.js) processa a autenticação com a Apple e, em seguida, armazena as informações necessárias (nome, email, etc.) no Firebase. Se alguém já trabalhou com essa combinação (React Native, Node.js, Firebase e Sign in with Apple) e puder compartilhar alguma experiência, dicas, exemplos de código ou até mesmo um boilerplate, seria de grande ajuda!
0
0
405
Jan ’25
Hardware Memory Tag (MIE) enforcement outside of debugger
(Xcode 26.2, iPhone 17 Pro) I can't seem to get hardware tag checks to work in an app launched without the special "Hardware Memory Tagging" diagnostics. In other words, I have been unable to reproduce the crash example at 6:40 in Apple's video "Secure your app with Memory Integrity Enforcement". When I write a heap overflow or a UAF, it is picked up perfectly provided I enable the "Hardware Memory Tagging" feature under Scheme Diagnostics. If I instead add the Enhanced Security capability with the memory-tagging related entitlements: I'm seeing distinct memory tags being assigned in pointers returned by malloc (without the capability, this is not the case) Tag mismatches are not being caught or enforced, regardless of soft mode The behaviour is the same whether I launch from Xcode without "Hardware Memory Tagging", or if I launch the app by tapping it on launchpad. In case it was related to debug builds, I also tried creating an ad hoc IPA and it didn't make any difference. I realise there's a wrinkle here that the debugger sets MallocTagAll=1, so possibly it will pick up a wider range of issues. However I would have expected that a straight UAF would be caught. For example, this test code demonstrates that tagging is active but it doesn't crash: #define PTR_TAG(p) ((unsigned)(((uintptr_t)(p) >> 56) & 0xF)) void *p1 = malloc(32); void *p2 = malloc(32); void *p3 = malloc(32); os_log(OS_LOG_DEFAULT, "p1 = %p (tag: %u)\n", p1, PTR_TAG(p1)); os_log(OS_LOG_DEFAULT, "p2 = %p (tag: %u)\n", p2, PTR_TAG(p2)); os_log(OS_LOG_DEFAULT, "p3 = %p (tag: %u)\n", p3, PTR_TAG(p3)); free(p2); void *p2_realloc = malloc(32); os_log(OS_LOG_DEFAULT, "p2 after free+malloc = %p (tag: %u)\n", p2_realloc, PTR_TAG(p2_realloc)); // Is p2_realloc the same address as p2 but different tag? os_log(OS_LOG_DEFAULT, "Same address? %s\n", ((uintptr_t)p2 & 0x00FFFFFFFFFFFFFF) == ((uintptr_t)p2_realloc & 0x00FFFFFFFFFFFFFF) ? "YES" : "NO"); // Now try to use the OLD pointer p2 os_log(OS_LOG_DEFAULT, "Attempting use-after-free via old pointer p2...\n"); volatile char c = *(volatile char *)p2; // Should this crash? os_log(OS_LOG_DEFAULT, "Read succeeded! Value: %d\n", c); Example output: p1 = 0xf00000b71019660 (tag: 15) p2 = 0x200000b711958c0 (tag: 2) p3 = 0x300000b711958e0 (tag: 3) p2 after free+malloc = 0x700000b71019680 (tag: 7) Same address? NO Attempting use-after-free via old pointer p2... Read succeeded! Value: -55 For reference, these are my entitlements. [Dict] [Key] application-identifier [Value] [String] … [Key] com.apple.developer.team-identifier [Value] [String] … [Key] com.apple.security.hardened-process [Value] [Bool] true [Key] com.apple.security.hardened-process.checked-allocations [Value] [Bool] true [Key] com.apple.security.hardened-process.checked-allocations.enable-pure-data [Value] [Bool] true [Key] com.apple.security.hardened-process.dyld-ro [Value] [Bool] true [Key] com.apple.security.hardened-process.enhanced-security-version [Value] [Int] 1 [Key] com.apple.security.hardened-process.hardened-heap [Value] [Bool] true [Key] com.apple.security.hardened-process.platform-restrictions [Value] [Int] 2 [Key] get-task-allow [Value] [Bool] true What do I need to do to make Memory Integrity Enforcement do something outside the debugger?
0
0
155
1d