Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Compatibility issue of TensorFlow-metal with PyArrow
Overview I'm experiencing a critical issue where TensorFlow-metal and PyArrow seem to be incompatible when installed together in the same environment. Whenever both packages are present, TensorFlow crashes and the kernel dies during execution. Environment Details Environment Details macOS Version: 15.3.2 Mac Model: MacBook Pro Max M3 Python Version: 3.11 TensorFlow Version: 2.19 PyArrow Version: 19.0.0 Issue Description: When both TensorFlow-metal and PyArrow are installed in the same Python environment, any attempt to use TensorFlow results in immediate kernel crashes. The issue appears to be a compatibility problem between these two packages rather than a problem with either package individually. Steps to Reproduce Create a new Python environment: conda create -n tf-metal python=3.11 Install TensorFlow-metal: pip install tensorflow tensorflow-metal Install PyArrow: pip install pyarrow Run the following minimal example: # Create a simple model model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(2,)), tf.keras.layers.Dense(1) ]) model.compile(optimizer='adam', loss='mse') model.summary() # This works fine # Generate some dummy data X = np.random.random((100, 2)) y = np.random.random((100, 1)) # The crash happens exactly at this line model.fit(X, y, epochs=5, batch_size=32) # CRASH: Kernel dies here Result: Kernel crashes with no error message What I've Tried Reinstalling both packages in different orders Using different versions of both packages Creating isolated environments Checking system logs for additional error information The only workaround I've found is to use separate environments for each package, which isn't practical for my workflow as I need both libraries for my data processing and machine learning pipeline. Questions Has anyone else encountered this specific compatibility issue? Are there known workarounds that allow both packages to coexist? Is this a known issue that's being addressed in upcoming releases? Any insights, suggestions, or assistance would be greatly appreciated. I'm happy to provide any additional information that might help diagnose this problem. Thank you in advance for your help! Thank you in advance for your help!
2
0
123
May ’25
A specific mlmodelc model runs on iPhone 15, but not on iPhone 16
As we described on the title, the model that I have built completely works on iPhone 15 / A16 Bionic, on the other hand it does not run on iPhone 16 / A18 chip with the following error message. E5RT encountered an STL exception. msg = MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED. E5RT: MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED (11) It consumes 1.5 ~ 1.6 GB RAM on the loading the model, then the consumption is decreased to less than 100MB on the both of iPhone 15 and 16. After that, only on iPhone 16, the above error is shown on the Xcode log, the memory consumption is surged to 5 to 6GB, and the system kills the app. It works well only on iPhone 15. This model is built with the Core ML tools. Until now, I have tried the target iOS 16 to 18 and the compute units of CPU_AND_NE and ALL. But any ways have not solved this issue. Eventually, what kindof fix should I do? minimum_deployment_target = ct.target.iOS18 compute_units = ct.ComputeUnit.ALL compute_precision = ct.precision.FLOAT16
2
0
171
May ’25
VNDetectTextRectanglesRequest not detecting text rectangles (includes image)
Hi everyone, I'm trying to use VNDetectTextRectanglesRequest to detect text rectangles in an image. Here's my current code: guard let cgImage = image.cgImage(forProposedRect: nil, context: nil, hints: nil) else { return } let textDetectionRequest = VNDetectTextRectanglesRequest { request, error in if let error = error { print("Text detection error: \(error)") return } guard let observations = request.results as? [VNTextObservation] else { print("No text rectangles detected.") return } print("Detected \(observations.count) text rectangles.") for observation in observations { print(observation.boundingBox) } } textDetectionRequest.revision = VNDetectTextRectanglesRequestRevision1 textDetectionRequest.reportCharacterBoxes = true let handler = VNImageRequestHandler(cgImage: cgImage, orientation: .up, options: [:]) do { try handler.perform([textDetectionRequest]) } catch { print("Vision request error: \(error)") } The request completes without error, but no text rectangles are detected — the observations array is empty (count = 0). Here's a sample image I'm testing with: I expected VNTextObservation results, but I'm not getting any. Is there something I'm missing in how this API works? Or could it be a limitation of this request or revision? Thanks for any help!
2
0
136
May ’25
A Summary of the WWDC25 Group Lab - Apple Intelligence
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Apple Intelligence. Can I integrate writing tools in my own text editor? UITextView, NSTextView, and SwiftUI TextEditor automatically get Writing Tools on devices that support Apple Intelligence. For custom text editors, check out Enhancing your custom text engine with Writing Tools. Given that Foundation Models are on-device, how will Apple update the models over time? And how should we test our app against the model updates? Model updates are in sync with OS updates. As for testing with updated models, watch our WWDC session about prompt engineering and safety, and read the Human Interface Guidelines to understand best practices in prompting the on-device model. What is the context size of a session in Foundation Models Framework? How to handle the error if a session runs out of the context size? Currently the context size is about 4,000 tokens. If it’s exceeded, developers can catch the .exceededContextWindowSize error at runtime. As discussed in one of our WWDC25 sessions, when the context window is exceeded, one approach is to trim and summarize a transcript, and then start a new session. Can I do image generation using the Foundation Models Framework or is only text generation supported? Foundation Models do not generate images, but you can use the Foundation Models framework to generate prompts for ImageCreator in the Image Playground framework. Developers can also take advantage of Tools in Foundation Models framework, if appropriate for their app. My app currently uses a third party server-based LLM. Can I use the Foundation Models Framework as well in the same app? Any guidance here? The Foundation Models framework is optimized for a subset of tasks like summarization, extraction, classification, and tagging. It’s also on-device, private, and free. But at 3 billion parameters it isn’t designed for advanced reasoning or world knowledge, so for some tasks you may still want to use a larger server-based model. Should I use the AFM for my language translation features given it does text translation, or is the Translation API still the preferred approach? The Translation API is still preferred. Foundation Models is great for tasks like text summarization and data generation. It’s not recommended for general world knowledge or translation tasks. Will the TranslationSession class introduced in ios18 get any new improvments in performance or reliability with the new live translation abilities in ios/macos/ipados 26? Essentially, will we get access to live translation in a similar way and if so, how? There's new API in LiveCommunicationKit to take advantage of live translation in your communication apps. The Translate framework is using the same models as used by Live Communication and can be combined with the new SpeechAnalyzer API to translate your own audio. How do I set a default value for an App Intent parameter that is otherwise required? You can implement a default value as part of your parameter declaration by using the @Parameter(defaultValue:) form of the property wrapper. How long can an App Intent run? On macOS there is no limit to how long app intents can run. On iOS, there is a limit of 30 seconds. This time limit is paused when waiting for user interaction. How do I vary the options for a specific parameter of an App Intent, not just based on the type? Implement a DynamicOptionsProvider on that parameter. You can add suggestedEntities() to suggest options. What if there is not a schema available for what my app is doing? If an app intent schema matching your app’s functionality isn’t available, take a look to see if there’s a SiriKit domain that meets your needs, such as for media playback and messaging apps. If your app’s functionality doesn’t match any of the available schemas, you can define a custom app intent, and integrate it with Siri by making it an App Shortcut. Please file enhancement requests via Feedback Assistant for new App intent schemas that would benefit your app. Are you adding any new app intent domains this year? In addition to all the app intent domains we announced last year, this year at WWDC25 we announced that Visual Intelligence will be added to iOS 26 and macOS Tahoe. When my App Intent doesn't show up as an action in Shortcuts, where do I start in figuring out what went wrong? App Intents are statically extracted. You can check the ExtractMetadata info in Xcode's build log. What do I need to do to make sure my App Intents work well with Spotlight+? Check out our WWDC25 sessions on App Intents, including Explore new advances in App Intents and Develop for Shortcuts and Spotlight with App Intents. Mostly, make sure that your intent can run from the parameter summary alone, no required parameters without default values that are not already in the parameter summary. Does Spotlight+ on macOS support App Shortcuts? Not directly, but it shows the App Intents your App Shortcuts are sitting on top of. I’m wondering if the on-device Foundation Models framework API can be integrated into an app to act strictly as an app in-universe AI assistant, responding only within the boundaries of the app’s fictional context. Is such controlled, context-limited interaction supported? FM API runs inside the process of your app only and does not automatically integrate with any remaining part of the system (unless you choose to implement your own tool and utilize tool calling). You can provide any instructions and prompts you want to the model. If a country does not support Apple Intelligence yet, can the Foundation Models framework work? FM API works on Apple Intelligence-enabled devices in supported regions and won’t work in regions where Apple Intelligence is not yet supported
2
0
267
Jul ’25
Can't apply compression techniques on my CoreML Object Detection model.
import coremltools as ct from coremltools.models.neural_network import quantization_utils # load full precision model model_fp32 = ct.models.MLModel(modelPath) model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16) model_fp16.save("reduced-model.mlmodel") I'm testing it with the model from one of Apple's source codes(GameBoardDetector), and it works fine, reduces the model size by half. But there are several problems with my model(trained on CreateML app using Full Network): Quantizing to float 16 does not work(new file gets created with reduced only 0.1mb). Quantizing to below 16 values cause errors, and no file gets created. Here are additional metadata and precisions of models. Working model's additional metadata and precision: Mine's additional metadata and precision:
2
0
635
Jan ’25
Swift playgrounds (.swiftpm) and CoreML
Hey guys, I've been having difficulties transferring my Xcode project to a Swift playground (.swiftpm) for the Swift Student Challenge. I keep getting these errors as well as none of the views being able to find the model in scope: "TrashDetector 1.mlmodel: No predominant language detected. Set COREML_CODEGEN_LANGUAGE to preferred language." Unexpected duplicate tasks: Target 'TrashQuest' (project 'TrashQuest') has write command with output /Users/kmcph3/Library/Developer/Xcode/DerivedData/TrashQuest-glvzskunedgtakfrdmsxdoplondj/Build/Intermediates.noindex/TrashQuest.build/Debug-iphonesimulator/TrashQuest.build/0a4ef2429d66360920ddb4f16e65e233.sb I've gone through multiple post with these exact problems, but they all seem to be talking about ".playground" files due to the "Resources" folder (mind you I did try exactly what they said). Is there anyone that can help??? (Quick side note, why does it need to be a swiftpm file for the SSC??? Like why can't we just send the zip of our Xcode project??)
2
0
790
Feb ’25
Is there an API to check if a Core ML compiled model is already cached?
Hello Apple Developer Community, I'm investigating Core ML model loading behavior and noticed that even when the compiled model path remains unchanged after an APP update, the first run still triggers an "uncached load" process. This seems to impact user experience with unnecessary delays. Question: Does Core ML provide any public API to check whether a compiled model (from a specific .mlmodelc path) is already cached in the system? If such API exists, we'd like to use it for pre-loading decision logic - only perform background pre-load when the model isn't cached. Has anyone encountered similar scenarios or found official solutions? Any insights would be greatly appreciated!
2
0
222
May ’25
Create ML how to handle polygon annotations?
I have images, and I annotated with polygon, actually simple trapezoid, so 4 points. I have been trying and trying but can't get Create ML to work. I am trying Object Detection. I am not a real programmer so really would greatly appreciate some guidance to help to get this model created. I think I made a Detectron2 model, and tried to get that converted into a mlmodel I need for xcode but had troubles there also. thank you. { "annotation": "IMG_1803.JPG", "annotations": [ { "label": "court", "coordinates": { "x": [ 187, 3710, 2780, 929 ], "y": [ 1689, 1770, 478, 508 ] } } ] },
2
0
732
Jan ’25
Setting Required Capabilities for Foundation Models
Is there any way to ensure iOS apps we develop using Foundation Models can only be purchasable/downloadable on App Store by folks with capable devices? I would've thought there would be a Required Capabilities that App Store would hook into, but I don't seem to see it in the documentation here: https://developer.apple.com/documentation/bundleresources/information-property-list/uirequireddevicecapabilities The closest seems to be iphone-performance-gaming-tier as that seems to target all M1 and above chips on iPhone & iPad. There is an ipad-minimum-performance-m1 that would more reasonably seem to ensure Foundation Models is likely available, but that doesn't help with iPhone. So far, it seems the only path would be to set Minimum Deployment to iOS 26 and add iphone-performance-gaming-tier as a required capability, but I'm a bit worried that capability might diverge in the future from what's Foundation Model / Apple Intelligence capable. While I understand for the majority of apps they'll want to just selectively add in Apple Intelligence features and so can be usable by folks whose devices don't support it, the app experience I'm building doesn't make sense without the Foundation Models being available and I'd rather not have a large number of users downloading the app to be told "Sorry, you're not Apple Intelligence capable"
2
2
240
Aug ’25
Metal GPU Work Won't Stop
Is there any way to stop GPU work running that is scheduled using metal? Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display. Why is this functionality not available when Swift Tasks are able to be canceled?
2
0
752
Feb ’25
Foundation Model - Change LLM
Almost everywhere else you see Apple Intelligence, you get to select whether it's on device, private cloud compute, or ChatGPT. Is there a way to do that via code in the Foundation Model? I searched through the docs and couldn't find anything, but maybe I missed it.
2
1
152
Jul ’25
Using Core ML in a .swiftpm file
Hi everyone, I've been struggling for a few weeks to integrate my Core ML Image Classifier model into my .swiftpm project, and I’m hoping someone can help. Here’s what I’ve done so far: I converted my .mlmodel file to .mlmodelc manually via the terminal. In my Package.swift file, I tried both "copy" and "process" options for the resource. The issues I’m facing: When using "process", Xcode gives me the error: "multiple resources named 'coremldata.bin' in target 'AppModule'." When using "copy", the app runs, but the model doesn’t work, and the terminal shows: "A valid manifest does not exist at path: .../Manifest.json." I even tried creating a Manifest.json manually to test, but this led to more errors, such as: "File format version must be in the form of major.minor.patch." "Failed to look up root model." To check if the problem was specific to my model, I tested other Core ML models in the same setup, but none of them worked either. I feel stuck and unsure of how to resolve these issues. Any guidance or suggestions would be greatly appreciated. Thanks in advance! :)
2
2
1.2k
Jan ’25
Ways I can leverage AI when the user asks Siri, "What does this word mean"
I'm the creator of an app that helps users learn Arabic. Inside of the app users can save words, engage in lessons specific to certain grammar concepts etc. I'm looking for a way for Siri to 'suggest' my app when the user asks to define any Arabic words. There are other questions that I would like for Siri to suggest my app for, but I figure that's a good start. What framework am I looking for here? I think AppItents? I remember I played with it for a bit last year but didn't get far. Any suggestions would be great. Would the new Foundations model be any help here?
2
0
123
Jun ’25
Vision Framework - Testing RecognizeDocumentsRequest
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM I am running Xcode Beta, however I only have one primary device that I cannot install beta software on. Please provide a strategy for testing. Will simulator work? The new capability is critical to my application, just what I need for structuring document scans and extraction. Thank you.
1
0
204
Jun ’25