Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Safety Guardrail errors for tiny prompt (dropped into large app)
I was able to open a new project and play around with the Foundation Model, but when I dropped this class in a production app (with a lot of files) I'm running into Safety Guardrail errors for this very small prompt. Specifically it's "Safety guardrail was triggered after consecutive failures during streaming." Does it have something to do with the size of the app? I don't know what else to try to get it to work? import FoundationModels import Playgrounds @available(iOS 26.0, *) #Playground { Task { do { let session = LanguageModelSession() let prompt = "Write a short story about a talking cat." let response = try await session.respond(to: prompt) print(response) } catch { print("Error: \(error)") } } }
3
2
245
Jun ’25
Create ML Model Shows Wrong output or predictions in xcode
I am working on a CoreML image classification model in Xcode, which takes a 299x299 image and attempts to classify hand-drawn sketches. The model was trained using Create ML and works perfectly when tested in the Create ML preview. However, when used in Xcode application, the classification results are incorrect. I have already verified that the image is correctly resized to 299x299 pixels, matching the input size of the model. The classification always returns incorrect results, even when using images that were correctly classified during training. I originally used kCVPixelFormatType_32ARGB, but I read that CoreML typically expects BGRA format. I updated my conversion function to use kCVPixelFormatType_32BGRA and CGImageAlphaInfo.premultipliedLast, but the issue persists. This makes me suspect that either the pixel format is still incorrect or that something went wrong during the .mlmodelc compilation.
1
2
485
Jan ’25
RecognizeDocumentsRequest for receipts
Hi, I'm trying to use the new RecognizeDocumentsRequest from the Vision Framework to read a receipt. It looks very promising by being able to read paragraphs, lines and detect data. So far it unfortunately seems to read every line on the receipt as a paragraph and when there is more space on one line it creates two paragraphs. Is there perhaps an Apple Engineer who knows if this is expected behaviour or if I should file a Feedback for this? Code setup: let request = RecognizeDocumentsRequest() let observations = try await request.perform(on: image) guard let document = observations.first?.document else { return } for paragraph in document.paragraphs { print(paragraph.transcript) for data in paragraph.detectedData { switch data.match.details { case .phoneNumber(let data): print("Phone: \(data)") case .postalAddress(let data): print("Postal: \(data)") case .calendarEvent(let data): print("Calendar: \(data)") case .moneyAmount(let data): print("Money: \(data)") case .measurement(let data): print("Measurement: \(data)") default: continue } } } See attached image as an example of a receipt I'd like to parse. The top 3 lines are the name, street, and postal code + city. These are all separate paragraphs. Checking on detectedData does see the street (2nd line) as PostalAddress, but not the complete address. Might that be a location thing since it's a Dutch address. And lower on the receipt it sees the block with "Pomp 1 95 Ongelood" and the things below also as separate paragraphs. First picking up the left side and after that the right side. So it's something like this: * Pomp 1 Volume Prijs € TOTAAL * BTW Netto 21.00 % 95 Ongelood 41,90 l 1.949/ 1 81.66 € 14.17 67.49
3
1
475
Nov ’25
Avoid hallucinations and information from trainning data
Hi For certain tasks, such as qualitative analysis or tagging, it is advisable to provide the AI with the option to respond with a joker / wild card answer when it encounters difficulties in tagging or scoring. For instance, you can include this slot in the prompt as follows: output must be "not data to score" when there isn't information to score. In the absence of these types of slots, AI trends to provide a solution even when there is insufficient information. Foundations Models are told to be prompted with simple prompts. I wonder: Is recommended keep this slot though adds verbose complexity? Is the best place the comment of a guided attribute? other tips? Another use case is when you want the AI to be tied to the information provided in the prompt and not take information from its data set. What is the best approach to this purpose? Thanks in advance for any suggestion.
4
0
801
Oct ’25
FoundationModel, context length, and testing
I am working on an app using FoundationModels to process web pages. I am looking to find ways to filter the input to fit within the token limits. I have unit tests, UI tests and the app running on an iPad in the simulator. It appears that the different configurations of the test environment seems to affect the token limits. That is, the same input in a unit test and UI test will hit different token limits. Is this correct? Or is this an artifact of my test tooling?
5
0
945
Nov ’25
Setting Required Capabilities for Foundation Models
Is there any way to ensure iOS apps we develop using Foundation Models can only be purchasable/downloadable on App Store by folks with capable devices? I would've thought there would be a Required Capabilities that App Store would hook into, but I don't seem to see it in the documentation here: https://developer.apple.com/documentation/bundleresources/information-property-list/uirequireddevicecapabilities The closest seems to be iphone-performance-gaming-tier as that seems to target all M1 and above chips on iPhone & iPad. There is an ipad-minimum-performance-m1 that would more reasonably seem to ensure Foundation Models is likely available, but that doesn't help with iPhone. So far, it seems the only path would be to set Minimum Deployment to iOS 26 and add iphone-performance-gaming-tier as a required capability, but I'm a bit worried that capability might diverge in the future from what's Foundation Model / Apple Intelligence capable. While I understand for the majority of apps they'll want to just selectively add in Apple Intelligence features and so can be usable by folks whose devices don't support it, the app experience I'm building doesn't make sense without the Foundation Models being available and I'd rather not have a large number of users downloading the app to be told "Sorry, you're not Apple Intelligence capable"
2
2
240
Aug ’25
Using Core ML in a .swiftpm file
Hi everyone, I've been struggling for a few weeks to integrate my Core ML Image Classifier model into my .swiftpm project, and I’m hoping someone can help. Here’s what I’ve done so far: I converted my .mlmodel file to .mlmodelc manually via the terminal. In my Package.swift file, I tried both "copy" and "process" options for the resource. The issues I’m facing: When using "process", Xcode gives me the error: "multiple resources named 'coremldata.bin' in target 'AppModule'." When using "copy", the app runs, but the model doesn’t work, and the terminal shows: "A valid manifest does not exist at path: .../Manifest.json." I even tried creating a Manifest.json manually to test, but this led to more errors, such as: "File format version must be in the form of major.minor.patch." "Failed to look up root model." To check if the problem was specific to my model, I tested other Core ML models in the same setup, but none of them worked either. I feel stuck and unsure of how to resolve these issues. Any guidance or suggestions would be greatly appreciated. Thanks in advance! :)
2
2
1.2k
Jan ’25
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account?
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account? I'm trying to provide a real-time question feature for chatGPT, a logged-in extension account, while leveraging Apple Intelligence's LLM. Is there an API that also affects the extension login account?
1
0
193
Nov ’25
coreml Fetching decryption key from server failed
My iOS app supports iOS 18, and I’m using an encrypted CoreML model secured with a key generated from Xcode. Every few months (around every 3 months), the encrypted model fails to load for both me and my users. When I investigate, I find this error: coreml Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID To temporarily fix it, I delete the old key, generate a new one, re-encrypt the model, and submit an app update. This resolves the issue, but only for a while. This is a terrible experience for users and obviously not a sustainable solution. I want to understand: Why is this happening? Is there a known expiration or invalidation policy for CoreML encryption keys? How can I prevent this issue permanently? Any insights or official guidance would be really appreciated.
5
2
552
Jul ’25
Xcode 26.1 RC ( RC1 ?) Apple Intelligence using GPT (with account or without) or Sonnet (via OpenRouter) much slower
I didn't run benchmarks before update, but it seems at least 5x slower. Of course all the LLM work is on remote servers, so is non-intuitive to me this should be happening. Had updated MacOS and Xcode to 26.1RC at the same time, so can't even say I think it is MacOS or I think it is Xcode. Before the update the progress indicator for each piece of code might seem to get stuck at the very end (and toggling between Navigators and Coding Assistant) in Xcode UI seemed to refresh the UI and confirm coding complete... but now it seems progress races to 50%, then often is stuck at 75%... well earlier than used to get stuck. And it like something is legitimately processing not just a UI glitch. I'm wondering if this is somehow tied to visual rendering of the code in the little white window? CMD-TAB into Xcode seems laggy. Xcode is pinning a CPU. Why, this is all remote LLM work? MacBook Pro 2021 M1 64GB RAM. Went from 26.01 to 26.1RC. Didn't touch any of the betas until RC1.
1
1
256
Oct ’25
no tensorflow-metal past tf 2.18?
Hi We're on tensorflow 2.20 that has support now for python 3.13 (finally!). tensorflow-metal is still only supporting 2.18 which is over a year old. When can we expect to see support in tensorflow-metal for tf 2.20 (or later!) ? I bought a mac thinking I would be able to get great performance from the M processors but here I am using my CPU for my ML projects. If it's taking so long to release it, why not open source it so the community can keep it more up to date? cheers Matt
1
1
318
Nov ’25
Full documentation of annotations file for Create ML
The documentation for the Create ML tool ("Building an object detector data source") mentions that there are options for using normalized values instead of pixels and also different anchor point origins ("MLBoundingBoxCoordinatesOrigin") instead of always using "center". However, the JSON format for these does not appear in any examples. Does anyone know the format for these options?
0
1
154
May ’25
Is there an API for the 3D effect from flat photos?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo: https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image. Does anyone know if there is an API?
1
1
89
Jun ’25
lldb issues with Vision
HI, I've been modifying the Camera sample app found here: https://developer.apple.com/tutorials/sample-apps/capturingphotos-camerapreview ... in the processpreview images, I am calling in to the Vision APis to either detect a person or object, then I'm using the segmentation mask to extract the person and composite them onto a different background with some other filters. I am using coreimage to filter the CIImages, and converting and displaying as a SwiftUI Image. When running on my IPhone, it works fine. When running on my Iphone with the debugger, it crashes within a few seconds... Attached is a screenshot. At the top is an EXC_BAD_ACCESS in libRPAC.dylib`std::__1::__hash_table<std::__1::__hash_value_type<long, qos_info_t>, std::__1::__unordered_map_hasher<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::hash, std::__1::equal_to, true>, std::__1::__unordered_map_equal<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::equal_to, std::__1::hash, true>, std::__1::allocator<std::__1::__hash_value_type<long, qos_info_t>>>::__emplace_unique_key_args<long, std::__1::piecewise_construct_t const&, std::__1::tuple<long const&>, std::__1::tuple<>>: This was working fine a couple of days ago.. Not sure why it's popping up now. Am I correct in interpreting this as an LLDB issue? How do I fix it?
3
1
125
May ’25
Running a local LLM on Swift Playgrounds
I am trying to run TinyLlama directly using Swift Playgrounds for iOS. I have tried multiple solutions, like libraries (LLM.swift, swift-transformers, ...) which never worked due to import issues, and also tried importing an exported mlmodel. For the later, I followed the article about Llama 3.1 on CoreML. It was hard to understand how to do the inference with it, but I was able to export a mlpackage, that I then placed in a xcode project to generate the mlmodelc (compiled model) and the model class. I had to go with the first version described in the article, without optimizations, as I got errors during model loading with the flexible input shapes. I was able to run the model for one token generation. But my biggest problem is that, though the mlmodelc is only 550 MiB, th model loads 24+GiB of memory, largely exceeding what I can have on an iOS device. Is there a way to use do LLM inferences on Swift Playgrounds at a reasonable speed (even 1 token / s would be sufficient)?
0
1
1.5k
Jan ’25
Core ML model decryption on Intel chips
About the Core ML model encryption mention in:https://developer.apple.com/documentation/coreml/encrypting-a-model-in-your-app When I encrypted the model, if the machine is M chip, the model will load perfectly. One the other hand, when I test the executable on an Intel chip macbook, there will be an error: Error Domain=com.apple.CoreML Code=9 "Operation not supported on this platform." UserInfo={NSLocalizedDescription=Operation not supported on this platform.} Intel test machine is 2019 macbook air with CPU: Intel i5-8210Y, OS: 14.7.6 23H626, With Apple T2 Security Chip. The encrypted model do load on M2 and M4 macbook air. If the model is NOT encrypted, it will also load on the Intel test machine. I did not find in Core ML document that suggest if the encryption/decryption support Intel chips. May I check if the decryption indeed does NOT support Intel chip?
1
1
186
Sep ’25
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
1
1
634
Jan ’25
Model Rate Limits?
Trying the Foundation Model framework and when I try to run several sessions in a loop, I'm getting a thrown error that I'm hitting a rate limit. Are these rate limits documented? What's the best practice here? I'm trying to run the models against new content downloaded from a web service where I might get ~200 items in a given download. They're relatively small but there can be that many that want to be processed in a loop.
4
1
537
Jun ’25