Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

VNCoreMLTransform - request failed
Keep getting error : I have tried Picker for File, Photo Library , both same results . Debugging the resize for 360x360 but still facing this error. The model I'm trying to implement is created with CreateMLComponents The process is from example of WWDC 2022 Banana Ripeness , I have used index for each .jpg . Prediction Failed: The VNCoreMLTransform request failed Is there some possible way to solve it or is error somewhere in training of model ?
1
0
477
Mar ’25
ActivityClassifier doesn't classify movement
I'm using a custom create ML model to classify the movement of a user's hand in a game, The classifier has 3 different spell movements, but my code constantly predicts all of them at an equal 1/3 probability regardless of movement which leads me to believe my code isn't correct (as opposed to the model) which in CreateML at least gives me a heavily weighted prediction My code is below. On adding debug prints everywhere all the data looks good to me and matches similar to my test CSV data So I'm thinking my issue must be in the setup of my model code? /// Feeds samples into the model and keeps a sliding window of the last N frames. final class WandGestureStreamer { static let shared = WandGestureStreamer() private let model: SpellActivityClassifier private var samples: [Transform] = [] private let windowSize = 100 // number of frames the model expects /// RNN hidden state passed between inferences private var stateIn: MLMultiArray /// Last transform dropped from the window for continuity private var lastDropped: Transform? private init() { let config = MLModelConfiguration() self.model = try! SpellActivityClassifier(configuration: config) // Initialize stateIn to the model’s required shape let constraint = self.model.model.modelDescription .inputDescriptionsByName["stateIn"]! .multiArrayConstraint! self.stateIn = try! MLMultiArray(shape: constraint.shape, dataType: .double) } /// Call once per frame with the latest wand position (or any feature vector). func appendSample(_ sample: Transform) { samples.append(sample) // drop oldest frame if over capacity, retaining it for delta at window start if samples.count > windowSize { lastDropped = samples.removeFirst() } } func classifyIfReady(threshold: Double = 0.6) -> (label: String, confidence: Double)? { guard samples.count == windowSize else { return nil } do { let input = try makeInput(initialState: stateIn) let output = try model.prediction(input: input) // Save state for continuity stateIn = output.stateOut let best = output.label let conf = output.labelProbability[best] ?? 0 // If you’ve recognized a gesture with high confidence: if conf > threshold { return (best, conf) } else { return nil } } catch { print("Error", error.localizedDescription, error) return nil } } /// Constructs a SpellActivityClassifierInput from recorded wand transforms. func makeInput(initialState: MLMultiArray) throws -> SpellActivityClassifierInput { let count = samples.count as NSNumber let shape = [count] let timeArr = try MLMultiArray(shape: shape, dataType: .double) let dxArr = try MLMultiArray(shape: shape, dataType: .double) let dyArr = try MLMultiArray(shape: shape, dataType: .double) let dzArr = try MLMultiArray(shape: shape, dataType: .double) let rwArr = try MLMultiArray(shape: shape, dataType: .double) let rxArr = try MLMultiArray(shape: shape, dataType: .double) let ryArr = try MLMultiArray(shape: shape, dataType: .double) let rzArr = try MLMultiArray(shape: shape, dataType: .double) for (i, sample) in samples.enumerated() { let previousSample = i > 0 ? samples[i - 1] : lastDropped let model = WandMovementRecording.DataModel(transform: sample, previous: previousSample) // print("model", model) timeArr[i] = NSNumber(value: model.timestamp) dxArr[i] = NSNumber(value: model.dx) dyArr[i] = NSNumber(value: model.dy) dzArr[i] = NSNumber(value: model.dz) let rot = model.rotation rwArr[i] = NSNumber(value: rot.w) rxArr[i] = NSNumber(value: rot.x) ryArr[i] = NSNumber(value: rot.y) rzArr[i] = NSNumber(value: rot.z) } return SpellActivityClassifierInput( dx: dxArr, dy: dyArr, dz: dzArr, rotation_w: rwArr, rotation_x: rxArr, rotation_y: ryArr, rotation_z: rzArr, timestamp: timeArr, stateIn: initialState ) } }
1
0
378
Jul ’25
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account?
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account? I'm trying to provide a real-time question feature for chatGPT, a logged-in extension account, while leveraging Apple Intelligence's LLM. Is there an API that also affects the extension login account?
1
0
194
Nov ’25
Downloading my fine tuned model from huggingface
I have used mlx_lm.lora to fine tune a mistral-7b-v0.3-4bit model with my data. I fused the mistral model with my adapters and upload the fused model to my directory on huggingface. I was able to use mlx_lm.generate to use the fused model in Terminal. However, I don't know how to load the model in Swift. I've used Imports import SwiftUI import MLX import MLXLMCommon import MLXLLM let modelFactory = LLMModelFactory.shared let configuration = ModelConfiguration( id: "pharmpk/pk-mistral-7b-v0.3-4bit" ) // Load the model off the main actor, then assign on the main actor let loaded = try await modelFactory.loadContainer(configuration: configuration) { progress in print("Downloading progress: \(progress.fractionCompleted * 100)%") } await MainActor.run { self.model = loaded } I'm getting an error runModel error: downloadError("A server with the specified hostname could not be found.") Any suggestions? Thanks, David PS, I can load the model from the app bundle // directory: Bundle.main.resourceURL! but it's too big to upload for Testflight
1
0
529
Oct ’25
Why doesn't tensorflow-metal use AMD GPU memory?
From tensorflow-metal example: Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall? I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU. But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
1
0
226
Apr ’25
CoreML multifunction model runtime memory cost
Recently, I'm trying to deploy some third-party LLM to Apple devices. The methodoloy is similar to https://github.com/Anemll/Anemll. The biggest issue I'm having now is the runtime memory usage. When there are multiple functions in a model (mlpackage or mlmodelc), the runtime memory usage for weights is somehow duplicated when I load all of them. Here's the detail: I created my multifunction mlpackage following https://apple.github.io/coremltools/docs-guides/source/multifunction-models.html I loaded each of the functions using the generated swift class: let config = MLModelConfiguration() config.computeUnits = MLComputeUnits.cpuAndNeuralEngine config.functionName = "infer_512"; let ffn1_infer_512 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config) config.functionName = "infer_1024"; let ffn1_infer_1024 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config) config.functionName = "infer_2048"; let ffn1_infer_2048 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config) I observed that RAM usage increases linearly as I load each of the functions. Using instruments, I see that there are multiple HWX files generated and loaded, each of which contains all the weight data. My understanding of what's happening here: The CoreML framework did some MIL->MIL preprocessing before further compilation, which includes separating CPU workload from ANE workload. The ANE part of each function is moved into a separate MIL file then compile separately into a HWX file each. The problem is that the weight data of these HWX files are duplicated. Since that the weight data of LLMs is huge, it will cause out-of-memory issue on mobile devices. The improvement I'm hoping from Apple: I hope we can try to merge the processed MIL files back into one before calling ANECCompile(), so that the weights can be merged. I don't have control over that in user space and I'm not sure if that is feasible. So I'm asking for help here. Thanks.
1
0
162
Apr ’25
Foundation Model crash on macOS 15 (iPad app compatibility)
I have integrated Apple’s Foundation Model into my iOS application. As known, Foundation Model is only supported starting from iOS 26 on compatible devices. To maintain compatibility with older iOS versions, I wrapped the API calls with the condition if #available(iOS 26, *). The application works normally on an iPad running iOS 18 and on a Mac running macOS 26. However, when running the same build on a MacBook Air M1 (macOS 15) through iPad app compatibility, the app crashes immediately upon launch. The main issue is that I cannot debug directly on macOS 15, since the app can only be built on macOS 26 with Xcode beta. I then have to distribute it via TestFlight and download it on the MacBook Air M1 for testing. This makes identifying the detailed cause of the crash very difficult and time-consuming. Nevertheless, I have confirmed that the crash is caused by the Foundation Model APIs.
1
0
944
Aug ’25
Train adapter with tool calling
Documentation on adapter train is lacking any details related to training on dataset with tool calling. And page about tool calling itself only explain how to use it from Swift without any internal details useful in training. Question is how schema should looks like for including tool calling in dataset?
1
0
240
Jun ’25
How can I give my documents access to Model Foundation
I would like to write a macOS application that uses on-device AI (FoundationModels). I don’t understand how to, practically, give it access to my documents, photos, or contacts and be able to ask it a question like: “Find the document that talks about this topic.” Do I need to manually retrieve the data and provide it in the form of a prompt? Or is FoundationModels capable of accessing it on its own? Thanks
1
0
573
Oct ’25
ML models failed to decrypt and load
We have suddenly encountered a serious issue: our local ML models are no longer being decrypted. Everything was set up according to the guide at https://developer.apple.com/documentation/coreml/generating-a-model-encryption-key and had been working in production, but yesterday we started receiving the following error: Error Domain=com.apple.CoreML Code=8 "Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID." UserInfo={NSLocalizedDescription=Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID.} We haven’t changed anything in our code. This started spontaneously affecting users of the release version as of yesterday. It also no longer works locally — we receive the same error at the moment the autogenerated function is called: class func load(configuration: MLModelConfiguration = MLModelConfiguration(), completionHandler handler: @escaping (Swift.Result<ZingPDModel, Error>) -> Void) I assume that I can generate a new key through Xcode, integrate it in place of the old one, and it might start working again. However, this won’t affect existing users until they update the app. Could the issue be on Apple’s infrastructure side?
1
0
325
Jul ’25
Training Images for Vision Classifier Model - Swift Student Challenge
I'm working on my Swift Student Challenge submission and developing a Vision framework-based image classifier. I want to ensure I'm following best practices for training data and follow to guidelines for what images I use to train my image classifier. What types of images can I use for training my model? Are there specific image databases or resources recommended by Apple that are safe to use for Swift Student Challenge submissions? Currently considering images used from wikipedia, and my own images
1
0
452
Feb ’25
tensorflow 2.20 broken support
Hi, testing latest tensorflow-metal plugin with tensorflow 2.20 doesn't work.. using python Python 3.12.11 (main, Jun 3 2025, 15:41:47) [Clang 17.0.0 (clang-1700.0.13.3)] on darwin simple testing shows error: import tensorflow as tf Traceback (most recent call last): File "", line 1, in File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file) tf.config.experimental.list_physical_devices('GPU') Traceback (most recent call last): File "", line 1, in NameError: name 'tf' is not defined I fixed this error by copying _pywrap_tensorflow_internal.so where it's searched.. 1)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64 2)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/ 3)cp /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/ then fails symbol not found: Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E in libmetal_plugin.dylib full log: with import tensorflow as tf Traceback (most recent call last): File "", line 1, in File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: <2FF91C8B-0CB6-3E66-96B7-092FDF36772E> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so
1
0
657
Oct ’25
Xcode 26 intelligence editor modifications.
Greetings, Ive been exerimenting with the new Apple intelligence chat. I want to be able to use my custom LLM and I made that work (I can chat back and forward from the left panel with my server) but I cannot find out how to change the editor contents like chatgpt does. chatgpt is able to change the current editor and, seems like, all files in the pbx. I tried to catch the call with charles with no success. In the OpenIA platform docs it doesnt mention anything that could change the code shown. does anyone know how to achieve this? Is the apple intelliece documentation lacking this features and will it be completed soon? will this features even be open for developers?
1
0
276
Jul ’25
Localizing prompts that has string interpolated generable objects
I'm working on localizing my prompts to support multiple languages, and in some cases my prompts has String interpolated Generable objects. for example: "Given the following workout routine: \(routine), suggest one additional exercise to complement it." In the Strings dictionary, I'm only able to select String, Int or Double parameters using %@ and %lld. Has anyone found a way to accomplish this?
1
0
364
Jul ’25