I see the solution is simple "just change the language in the build settings" but the build settings are not a thing in an App Playground project. It also says duplicated tasks.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi,
I am developing an iOS application that utilizes Apple’s Foundation Models to perform certain summarization tasks. I would like to understand whether user data is transferred to Private Cloud Compute (PCC) in cases where the computation cannot be performed entirely on-device.
This information is critical for our internal security and compliance reviews. I would appreciate your clarification on this matter.
Thank you.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM
I am running Xcode Beta, however I only have one primary device that I cannot install beta software on.
Please provide a strategy for testing. Will simulator work?
The new capability is critical to my application, just what I need for structuring document scans and extraction.
Thank you.
Hello
It seems the model Content Tagging doesn't obey when I define the type of tag I wish in the instructions parameters, always the output are the main topics.
The unique form to get other type of tags like emotions is using Generable + Guided types. The documentation says it is recommended but not mandatory the use instructions.
Maybe I'm setting wrongly the instructions but take a look in the attached snapshot. I copied the definition of tagging emotions from the official documentation. The upper example is employing generable and it works but in the example at the botton I set like instruction the same description of emotion and it doesn't work. I tried with other statements with more or less verbose and never output emotions.
Could you provide a state using instruction where it works? Current version of model isn't working with instruction?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
基于iPhone 14 Max相机,实现模型识别,并在识别对象周围画一个矩形框。宽度和高度使用激光雷达计算,并在实时更新的图像上以厘米为单位显示。
swift code
When I initialize a session with an existing transcript using this initializer:
public convenience init(model: SystemLanguageModel = .default, guardrails: LanguageModelSession.Guardrails = .default, tools: [any Tool] = [], transcript: Transcript)
The tools get ignored. I noticed that when doing that, the model never use the tools. When inspecting the transcript, I can see that the instruction entry does not have any tools available to it.
I tried this for both transcripts that already include an instruction entry and ones that don't - both yielding the same result..
Is this the intended behavior / am I missing something here?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm new to Swift and was hoping the Playground would support loading adaptors. When I tried, I got a permissions error - thinking it's because it's not in the project and Playgrounds don't like going outside the project?
A tutorial and some sample code would be helpful.
Also some benchmarks on how long it's expected to take. Selfishly I'm on an M2 Mac Mini.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
v3 was released 2 years ago but developers are unable to convert models created with Keras v3 to CoreML
I've downloaded the Xcode-beta and run the sample project "FoundationModelsTripPlanner" but I got this error when trying generate the response.
InferenceError::inferenceFailed::Error Domain=com.apple.UnifiedAssetFramework Code=5000 "There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog" UserInfo={NSLocalizedFailureReason=There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog}
Device: M1 Pro
Question:
Is it because M1 not supporting this feature?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
When I am doing an uncached load of CoreML model on ANE, I received this warning in Xcode console
Type of hiddenStates in function main's I/O contains unknown strides. Using unknown strides for MIL tensor buffers with unknown shapes is not recommended in E5ML. Please use row_alignment_in_bytes property instead. Refer to https://e5-ml.apple.com/more-info/memory-layouts.html for more information.
However, the web link does not seem to be working. Where can I find more information about about this and how can I fix it?
Topic:
Machine Learning & AI
SubTopic:
Core ML
Hi Apple product owners.
I am missing a unified concept which might be derived from the use cases for mail categories and mail spam for the app "Mail" on Mac.
I need a recommendation on how to use categories in combination with the spam filter to get most out of it.
So I was looking for the use cases for the 2 functionality areas in order to figure out how to organise my mails by using as much automation as possible before I start creating intelligent folders in addition.
What can you recommend where I get this information from? I don't want to guess or read a lot of forum contributions which are based on guesses.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
I've spent way too long today trying to convert an Object Detection TensorFlow2 model to a CoreML object classifier (with bounding boxes, labels and probability score)
The 'SSD MobileNet v2 320x320' is here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
And I've been following all sorts of posts and ChatGPT
https://apple.github.io/coremltools/docs-guides/source/tensorflow-2.html#convert-a-tensorflow-concrete-function
https://developer.apple.com/videos/play/wwdc2020/10153/?time=402
To convert it.
I keep hitting the same errors though, mostly around:
NotImplementedError: Expected model format: [SavedModel | concrete_function | tf.keras.Model | .h5 | GraphDef], got <ConcreteFunction signature_wrapper(input_tensor) at 0x366B87790>
I've had varying success including missing output labels/predictions.
But I simply want to create the CoreML model with all the right inputs and outputs (including correct names) as detailed in the docs here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md
It goes without saying I don't have much (any) experience with this stuff including Python so the whole thing's been a bit of a headache.
If anyone is able to help that would be great.
FWIW I'm not attached to any one specific model, but what I do need at minimum is a CoreML model that can detect objects (has to at least include lights and lamps) within a live video image, detecting where in the image the object is.
The simplest script I have looks like this:
import coremltools as ct
import tensorflow as tf
model = tf.saved_model.load("~/tf_models/ssd_mobilenet_v2_320x320_coco17_tpu-8/saved_model")
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
mlmodel = ct.convert(
concrete_func,
source="tensorflow",
inputs=[ct.TensorType(shape=(1, 320, 320, 3))]
)
mlmodel.save("YourModel.mlpackage", save_format="mlpackage")
Hello!
I have a TrackNet model that I have converted to CoreML (.mlpackage) using coremltools, and the conversion process appears to go smoothly as I get the .mlpackage file I am looking for with the weights and model.mlmodel file in the folder. However, when I drag it into Xcode, it just shows up as 4 script tags (as pictured) instead of the model "interface" that is typically expected. I initially was concerned that my model was not compatible with CoreML, but upon logging the conversions, everything seems to be converted properly.
I have some code that may be relevant in debugging this issue: How I use the model:
model = BallTrackerNet() # this is the model architecture which will be referenced later
device = self.device # cpu
model.load_state_dict(torch.load("models/balltrackerbest.pt", map_location=device)) # balltrackerbest is the weights
model = model.to(device)
model.eval()
Here is the BallTrackerNet() model itself:
import torch.nn as nn
import torch
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, pad=1, stride=1, bias=True):
super().__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=bias),
nn.ReLU(),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
return self.block(x)
class BallTrackerNet(nn.Module):
def __init__(self, out_channels=256):
super().__init__()
self.out_channels = out_channels
self.conv1 = ConvBlock(in_channels=9, out_channels=64)
self.conv2 = ConvBlock(in_channels=64, out_channels=64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = ConvBlock(in_channels=64, out_channels=128)
self.conv4 = ConvBlock(in_channels=128, out_channels=128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = ConvBlock(in_channels=128, out_channels=256)
self.conv6 = ConvBlock(in_channels=256, out_channels=256)
self.conv7 = ConvBlock(in_channels=256, out_channels=256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv8 = ConvBlock(in_channels=256, out_channels=512)
self.conv9 = ConvBlock(in_channels=512, out_channels=512)
self.conv10 = ConvBlock(in_channels=512, out_channels=512)
self.ups1 = nn.Upsample(scale_factor=2)
self.conv11 = ConvBlock(in_channels=512, out_channels=256)
self.conv12 = ConvBlock(in_channels=256, out_channels=256)
self.conv13 = ConvBlock(in_channels=256, out_channels=256)
self.ups2 = nn.Upsample(scale_factor=2)
self.conv14 = ConvBlock(in_channels=256, out_channels=128)
self.conv15 = ConvBlock(in_channels=128, out_channels=128)
self.ups3 = nn.Upsample(scale_factor=2)
self.conv16 = ConvBlock(in_channels=128, out_channels=64)
self.conv17 = ConvBlock(in_channels=64, out_channels=64)
self.conv18 = ConvBlock(in_channels=64, out_channels=self.out_channels)
self.softmax = nn.Softmax(dim=1)
self._init_weights()
def forward(self, x, testing=False):
batch_size = x.size(0)
x = self.conv1(x)
x = self.conv2(x)
x = self.pool1(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.pool2(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.pool3(x)
x = self.conv8(x)
x = self.conv9(x)
x = self.conv10(x)
x = self.ups1(x)
x = self.conv11(x)
x = self.conv12(x)
x = self.conv13(x)
x = self.ups2(x)
x = self.conv14(x)
x = self.conv15(x)
x = self.ups3(x)
x = self.conv16(x)
x = self.conv17(x)
x = self.conv18(x)
# x = self.softmax(x)
out = x.reshape(batch_size, self.out_channels, -1)
if testing:
out = self.softmax(out)
return out
def _init_weights(self):
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.uniform_(module.weight, -0.05, 0.05)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Here is also the meta data of my model:
[
{
"metadataOutputVersion" : "3.0",
"storagePrecision" : "Float16",
"outputSchema" : [
{
"hasShapeFlexibility" : "0",
"isOptional" : "0",
"dataType" : "Float32",
"formattedType" : "MultiArray (Float32 1 × 256 × 230400)",
"shortDescription" : "",
"shape" : "[1, 256, 230400]",
"name" : "var_462",
"type" : "MultiArray"
}
],
"modelParameters" : [
],
"specificationVersion" : 6,
"mlProgramOperationTypeHistogram" : {
"Cast" : 2,
"Conv" : 18,
"Relu" : 18,
"BatchNorm" : 18,
"Reshape" : 1,
"UpsampleNearestNeighbor" : 3,
"MaxPool" : 3
},
"computePrecision" : "Mixed (Float16, Float32, Int32)",
"isUpdatable" : "0",
"availability" : {
"macOS" : "12.0",
"tvOS" : "15.0",
"visionOS" : "1.0",
"watchOS" : "8.0",
"iOS" : "15.0",
"macCatalyst" : "15.0"
},
"modelType" : {
"name" : "MLModelType_mlProgram"
},
"userDefinedMetadata" : {
"com.github.apple.coremltools.source_dialect" : "TorchScript",
"com.github.apple.coremltools.source" : "torch==2.5.1",
"com.github.apple.coremltools.version" : "8.1"
},
"inputSchema" : [
{
"hasShapeFlexibility" : "0",
"isOptional" : "0",
"dataType" : "Float32",
"formattedType" : "MultiArray (Float32 1 × 9 × 360 × 640)",
"shortDescription" : "",
"shape" : "[1, 9, 360, 640]",
"name" : "input_frames",
"type" : "MultiArray"
}
],
"generatedClassName" : "BallTracker",
"method" : "predict"
}
]
I have been struggling with this conversion for almost 2 weeks now so any help, ideas or pointers would be greatly appreciated! Let me know if any other information would be helpful to see as well.
Thanks!
Michael
Hi everyone,
I'm working on a SwiftUI app and need help building a view that integrates the device's camera and uses a pre-trained Core ML model for real-time object recognition. Here's what I want to achieve:
Open the device's camera from a SwiftUI view.
Capture frames from the camera feed and analyze them using a Create ML-trained Core ML model.
If a specific figure/object is recognized, automatically close the camera view and navigate to another screen in my app.
I'm looking for guidance on:
Setting up live camera capture in SwiftUI.
Using Core ML and Vision frameworks for real-time object recognition in this context.
Managing navigation between views when the recognition condition is met.
Any advice, code snippets, or examples would be greatly appreciated!
Thanks in advance!
Hi,
I'm testing DockKit with a very simple setup:
I use VNDetectFaceRectanglesRequest to detect a face and then call dockAccessory.track(...) using the detected bounding box.
The stand is correctly docked (state == .docked) and dockAccessory is valid.
I'm calling .track(...) with a single observation and valid CameraInformation (including size, device, orientation, etc.). No errors are thrown.
To monitor this, I added a logging utility – track(...) is being called 10–30 times per second, as recommended in the documentation.
However: the stand does not move at all.
There is no visible reaction to the tracking calls.
Is there anything I'm missing or doing wrong?
Is VNDetectFaceRectanglesRequest supported for DockKit tracking, or are there hidden requirements?
Would really appreciate any help or pointers – thanks!
That's my complete code:
extension VideoFeedViewController: AVCaptureVideoDataOutputSampleBufferDelegate {
func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
guard let frame = CMSampleBufferGetImageBuffer(sampleBuffer) else {
return
}
detectFace(image: frame)
func detectFace(image: CVPixelBuffer) {
let faceDetectionRequest = VNDetectFaceRectanglesRequest() { vnRequest, error in
guard let results = vnRequest.results as? [VNFaceObservation] else {
return
}
guard let observation = results.first else {
return
}
let boundingBoxHeight = observation.boundingBox.size.height * 100
#if canImport(DockKit)
if let dockAccessory = self.dockAccessory {
Task {
try? await trackRider(
observation.boundingBox,
dockAccessory,
frame,
sampleBuffer
)
}
}
#endif
}
let imageResultHandler = VNImageRequestHandler(cvPixelBuffer: image, orientation: .up)
try? imageResultHandler.perform([faceDetectionRequest])
func combineBoundingBoxes(_ box1: CGRect, _ box2: CGRect) -> CGRect {
let minX = min(box1.minX, box2.minX)
let minY = min(box1.minY, box2.minY)
let maxX = max(box1.maxX, box2.maxX)
let maxY = max(box1.maxY, box2.maxY)
let combinedWidth = maxX - minX
let combinedHeight = maxY - minY
return CGRect(x: minX, y: minY, width: combinedWidth, height: combinedHeight)
}
#if canImport(DockKit)
func trackObservation(_ boundingBox: CGRect, _ dockAccessory: DockAccessory, _ pixelBuffer: CVPixelBuffer, _ cmSampelBuffer: CMSampleBuffer) throws {
// Zähle den Aufruf
TrackMonitor.shared.trackCalled()
let invertedBoundingBox = CGRect(
x: boundingBox.origin.x,
y: 1.0 - boundingBox.origin.y - boundingBox.height,
width: boundingBox.width,
height: boundingBox.height
)
guard let device = captureDevice else {
fatalError("Kamera nicht verfügbar")
}
let size = CGSize(width: Double(CVPixelBufferGetWidth(pixelBuffer)),
height: Double(CVPixelBufferGetHeight(pixelBuffer)))
var cameraIntrinsics: matrix_float3x3? = nil
if let cameraIntrinsicsUnwrapped = CMGetAttachment(
sampleBuffer,
key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix,
attachmentModeOut: nil
) as? Data {
cameraIntrinsics = cameraIntrinsicsUnwrapped.withUnsafeBytes { $0.load(as: matrix_float3x3.self) }
}
Task {
let orientation = getCameraOrientation()
let cameraInfo = DockAccessory.CameraInformation(
captureDevice: device.deviceType,
cameraPosition: device.position,
orientation: orientation,
cameraIntrinsics: cameraIntrinsics,
referenceDimensions: size
)
let observation = DockAccessory.Observation(
identifier: 0,
type: .object,
rect: invertedBoundingBox
)
let observations = [observation]
guard let image = CMSampleBufferGetImageBuffer(sampleBuffer) else {
print("no image")
return
}
do {
try await dockAccessory.track(observations, cameraInformation: cameraInfo)
} catch {
print(error)
}
}
}
#endif
func clearDrawings() {
boundingBoxLayer?.removeFromSuperlayer()
boundingBoxSizeLayer?.removeFromSuperlayer()
}
}
}
}
@MainActor
private func getCameraOrientation() -> DockAccessory.CameraOrientation {
switch UIDevice.current.orientation {
case .portrait:
return .portrait
case .portraitUpsideDown:
return .portraitUpsideDown
case .landscapeRight:
return .landscapeRight
case .landscapeLeft:
return .landscapeLeft
case .faceDown:
return .faceDown
case .faceUp:
return .faceUp
default:
return .corrected
}
}
I live in EU, Ireland, And I don’t have access to apple intelligence. I have ios18 running on iPhone XR, but please make apple intelligence available on EU
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Hi, I'm looking for the best way to use MLX models, particularly those I've fine-tuned, within a React Native application on iOS devices. Is there a recommended integration path or specific API for bridging MLX's capabilities to React Native for deployment on iPhones and iPads?
Hi,
I want to develop an app which makes use of Image Playground.
However, I am located in Europe which makes it impossible for me as Image Playground is not available for me. Even if I would like to distribute the app in the US.
Nor the simulator, nor a physical device will always return that support for ImagePlayground is not supported
(@Environment(.supportsImagePlayground) private var supportsImagePlayground)
How to set my environment such that I can test the feature in my iOS application
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Hey dear developers!
This post should be available for the future Siri updates and improvements but also for wishes in this forum so that everyone can share their opinion and idea please stay friendly. have fun! I had already thought about developing a demo app to demonstrate my idea for a better Siri.
My change of many:
Wish Update: Siri's language recognition capabilities have been significantly enhanced. Instead of manually setting the language, Siri can now automatically recognize the language you intend to use, making language switching much more efficient. Simply speak the language you want to communicate in, and Siri will automatically recognize it and respond accordingly. Whether you speak English, German, or Japanese, Siri will respond in the language you choose.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
iPhone
Siri Event Suggestions Markup
Siri and Voice
Apple Intelligence
In the play ground I'm trying to bias my LanguageModel to use a tool I registered, but I don't see it actually calling the tool. I'm following the developer video on landmarks itinerary generation tutorial almost verbatim. Is this a prompt engineering thing I'm missing? Or is it possible that I'm injecting my tool wrong?