Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Swift playgrounds (.swiftpm) and CoreML
Hey guys, I've been having difficulties transferring my Xcode project to a Swift playground (.swiftpm) for the Swift Student Challenge. I keep getting these errors as well as none of the views being able to find the model in scope: "TrashDetector 1.mlmodel: No predominant language detected. Set COREML_CODEGEN_LANGUAGE to preferred language." Unexpected duplicate tasks: Target 'TrashQuest' (project 'TrashQuest') has write command with output /Users/kmcph3/Library/Developer/Xcode/DerivedData/TrashQuest-glvzskunedgtakfrdmsxdoplondj/Build/Intermediates.noindex/TrashQuest.build/Debug-iphonesimulator/TrashQuest.build/0a4ef2429d66360920ddb4f16e65e233.sb I've gone through multiple post with these exact problems, but they all seem to be talking about ".playground" files due to the "Resources" folder (mind you I did try exactly what they said). Is there anyone that can help??? (Quick side note, why does it need to be a swiftpm file for the SSC??? Like why can't we just send the zip of our Xcode project??)
2
0
790
Feb ’25
Metal GPU Work Won't Stop
Is there any way to stop GPU work running that is scheduled using metal? Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display. Why is this functionality not available when Swift Tasks are able to be canceled?
2
0
752
Feb ’25
Using the Apple Neural Engine for MLTensor operations
Based on the documentation, it appears that MLTensor can be used to perform tensor operations using the ANE (Apple Neural Engine) by wrapping the tensor operations with withMLTensorComputePolicy with a MLComputePolicy initialized with MLComputeUnits.cpuAndNeuralEngine (it can also be initialized with MLComputeUnits.all to let the OS spread the load between the Neural Engine, GPU and CPU). However, when using the Instruments app, it appears that the tensor operations never get executed on the Neural Engine. It would be helpful if someone can guide me on the correct way to ensure that the Nerual Engine is used to perform the tensor operations (not as part of a CoreML model file). based on this example, I've created a simple code to try it: import Foundation import CoreML print("Starting...") let semaphore = DispatchSemaphore(value: 0) Task { await withMLTensorComputePolicy(.init(MLComputeUnits.cpuAndNeuralEngine)) { let v1 = MLTensor([1.0, 2.0, 3.0, 4.0]) let v2 = MLTensor([5.0, 6.0, 7.0, 8.0]) let v3 = v1.matmul(v2) await v3.shapedArray(of: Float.self) // is 70.0 let m1 = MLTensor(shape: [2, 3], scalars: [ 1, 2, 3, 4, 5, 6 ], scalarType: Float.self) let m2 = MLTensor(shape: [3, 2], scalars: [ 7, 8, 9, 10, 11, 12 ], scalarType: Float.self) let m3 = m1.matmul(m2) let result = await m3.shapedArray(of: Float.self) // is [[58, 64], [139, 154]] // Supports broadcasting let m4 = MLTensor(randomNormal: [3, 1, 1, 4], scalarType: Float.self) let m5 = MLTensor(randomNormal: [4, 2], scalarType: Float.self) let m6 = m4.matmul(m5) print("Done") return result; } semaphore.signal() } semaphore.wait() Here's what I get on the Instruments app: Notice how the Neural Engine line shows no usage. Ive run this test on an M1 Max MacBook Pro.
2
4
778
Mar ’25
Creating .mlmodel with Create ML Components
I have rewatched WWDC22 a few times , but still not getting full understanding how to get .mlmodel model file type from components . Example with banana ripeness is cool , but what need to be added to actually have output of .mlmodel , is somewhere full sample code for this type of modular project ? Code is from [https://developer.apple.com/videos/play/wwdc2022/10019) import CoreImage import CreateMLComponents struct ImageRegressor { static let trainingDataURL = URL(fileURLWithPath: "~/Desktop/bananas") static let parametersURL = URL(fileURLWithPath: "~/Desktop/parameters") static func train() async throws -> some Transformer<CIImage, Float> { let estimator = ImageFeaturePrint() .appending(LinearRegressor()) // File name example: banana-5.jpg let data = try AnnotatedFiles(labeledByNamesAt: trainingDataURL, separator: "-", index: 1, type: .image) .mapFeatures(ImageReader.read) .mapAnnotations({ Float($0)! }) let (training, validation) = data.randomSplit(by: 0.8) let transformer = try await estimator.fitted(to: training, validateOn: validation) try estimator.write(transformer, to: parametersURL) return transformer } } I have tried to run it in Mac OS command line type app, Swift-UI but most what I had as output was .pkg with "pipeline.json, parameters, optimizer.json, optimizer"
3
0
561
Mar ’25
missing CreateML frameworks
I have reinstalled everything including command line tools but the CreateML frameworks fail to install, I need the framework so that I can train my auto-categorzation model which predicts category based on descriptions. I need that framework because I want to use reviision 4. please suggest advice on how do I proceed
4
0
759
Mar ’25
Making a model in MLLinearRegressor works with Sonoma, but on upgrading to 15.3.1 it no longer does "anything"
I was generating models using the code:- import Foundation import CreateML import TabularData import CoreML .... func makeTheModel(columntopredict:String,training:DataFrame,colstouse:[String],numberofmodels:Int) -> [MLLinearRegressor] { var returnmodels = [MLLinearRegressor]() var result = 0.0 for i in 0...numberofmodels { let pms = MLLinearRegressor.ModelParameters(validation: .split(strategy: .automatic)) do { let tm = try MLLinearRegressor(trainingData: training, targetColumn: columntopredict) returnmodels.append(tm) } catch let error as NSError { print("Error: \(error.localizedDescription)") } } return returnmodels } Which worked absolutely fine with Sonoma, but upon upgrading the OS to 15.3.1, it does absolutely nothing. I get no error messages, I get nothing, the code just pauses. If I look at CPU usage, as soon as it hits the line let tm = try MLLinearRegressor(trainingData: training, targetColumn: columntopredict) the CPU usage drops to 0% What am I doing wrong? Is there a flag I need to set somewhere in Xcode? This is on an M1 MacBook Pro Any help would be greatly appreciated
2
1
464
Mar ’25
Tensor Flow Metal 1.2.0 on M2 Fails to converge on common toy models
I've been trying to get some basic models to work on an M2 with tensor metal 1.2 and keras 2.15 and 2.18 and they all fail to work as expected. I'm running models copy/pasted from common tutorials like Jason Brownlee ML Mastery Object Classification tutorial using CIFAR-10. When run with the GPU I can't get any reasonable results. Under keras 2.15 the best validation accuracy ends up being around 10-15%. Under keras 2.18, the validation goes off the rails around epoch 5 with wildly low accuracy and loss values that are reported as "nan". Epoch 4/25 782/782: 19s 24ms/step - accuracy: 0.3450 - loss: 2.8925 - val_accuracy: 0.2992 - val_loss: 1.9869 Epoch 5/25 782/782: 19s 24ms/step - accuracy: 0.2553 - loss: nan - val_accuracy: 0.0000e+00 - val_loss: nan Running the same code on the CPU using keras 2.15 using tf.config.experimental.set_visible_devices([], 'GPU') yields a reasonable result with the validation accuracy around 75% as expected. Running the same code on keras 2.15 on a linux instance with just the CPU provides similar results. The tutorial can be found here: https://machinelearningmastery.com/object-recognition-convolutional-neural-networks-keras-deep-learning-library/ The only places I've deviated from the provided tutorial is using sdg = tf.keras.optimizers.legacy.SGD(learning_rate=lrate, momentum=0.9, nesterov=False) I did this at the advice of the warning: WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.SGD` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.SGD`. Is there something special that I need to do to make this work? I've followed the instructions here: https://developer.apple.com/metal/tensorflow-plugin/ I've purged the venv a few times and started from scratch, but all with similarly terrible results. Here are my platform details: Chip: Apple M2 Memory: 16 GB macOS : Sequoia 15.2 Python venv: 3.11 Jupyter Lab Version: 4.3.3 TensorFlow versions: 2.15, 2.18 tensorflow-metal: 1.2.0 Thanks for any assistance or advice.
8
3
903
Mar ’25
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
11k
Mar ’25
Group AppIntents’ Searchable DynamicOptionsProvider in Sections
I’m trying to group my EntityPropertyQuery selection into sections as well as making it searchable. I know that the EntityStringQuery is used to perform the text search via entities(matching string: String). That works well enough and results in this modal: Though, when I’m using a DynamicOptionsProvider to section my EntityPropertyQuery, it doesn’t allow for searching anymore and simply opens the sectioned list in a menu like so: How can I combine both? I’ve seen it in other apps, but can’t figure out why my code doesn’t allow to section the results and make it searchable? Any ideas? My code (simplified) struct MyIntent: AppIntent { @Parameter(title: "Meter"), optionsProvider: MyOptionsProvider()) var meter: MyIntentEntity? // … struct MyOptionsProvider: DynamicOptionsProvider { func results() async throws -> ItemCollection<MyIntentEntity> { // Get All Data let allData = try IntentsDataHandler.shared.getEntities() // Create Arrays for Sections let fooEntities = allData.filter { $0.type == .foo } let barEntities = allData.filter { $0.type == .bar } return ItemCollection(sections: [ ItemSection("Foo", items: fooEntities), ItemSection("Bar", items: barEntities) ]) } } struct MeterIntentQuery: EntityStringQuery { // entities(for identifiers: [UUID]) and suggestedEntities() functions func entities(matching string: String) async throws -> [MyIntentEntity] { // Fetch All Data let allData = try IntentsDataHandler.shared.getEntities() // Filter Data by String let matchingData = allData.filter { data in return data.title.localizedCaseInsensitiveContains(string)) } return matchingData } }
0
2
574
Mar ’25
VNCoreMLTransform - request failed
Keep getting error : I have tried Picker for File, Photo Library , both same results . Debugging the resize for 360x360 but still facing this error. The model I'm trying to implement is created with CreateMLComponents The process is from example of WWDC 2022 Banana Ripeness , I have used index for each .jpg . Prediction Failed: The VNCoreMLTransform request failed Is there some possible way to solve it or is error somewhere in training of model ?
1
0
477
Mar ’25
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.9k
Mar ’25
MPSGraph fused scaledDotProductAttention seems to be buggy
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
1
0
524
Mar ’25
[MPSGraph runWithFeeds:targetTensors:targetOperations:] randomly crash
I'm implementing an LLM with Metal Performance Shader Graph, but encountered a very strange behavior, occasionally, the model will report an error message as this: LLVM ERROR: SmallVector unable to grow. Requested capacity (9223372036854775808) is larger than maximum value for size type (4294967295) and crash, the stack backtrace screenshot is attached. Note that 5th frame is mlir::getIntValues<long long> and 6th frame is llvm::SmallVectorBase<unsigned int>::grow_pod It looks like mlir mistakenly took a 64 bit value for a 32 bit type. Unfortunately, I could not found the source code of mlir::getIntValues, maybe it's Apple's closed source fork of llvm for MPS implementation? Anyway, any opinion or suggestion on that?
0
0
196
Mar ’25
Failed to build the model execution plan using a model architecture file
Our app is downloading a zip of an .mlpackage file, which is then compiled into an .mlmodelc file using MLModel.compileModel(at:). This model is then run using a VNCoreMLRequest. Two users – and this after a very small rollout - are reporting issues running the VNCoreMLRequest. The error message from their logs: Error Domain=com.apple.CoreML Code=0 "Failed to build the model execution plan using a model architecture file '/private/var/mobile/Containers/Data/Application/F93077A5-5508-4970-92A6-03A835E3291D/Documents/SKDownload/Identify-image-iOS/mobile_img_eu_v210.mlmodelc/model.mil' with error code: -5." The URL there is to a file inside the compiled model. The error is happening when the perform function of VNImageRequestHandler is run. (i.e. the model compiled without an error.) Anyone else seen this issue? Its only picked up in a few web results and none of them are directly relevant or have a fix. I know that a CoreML error Code=0 is a generic error, but does anyone know what error code -5 is? Not even sure which framework its coming from.
1
0
295
Mar ’25
Selecting GPU for TensorFlow-Metal on Mac Pro (2013) with v0.8.0
Hi everyone, I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine. I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method. For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder: Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal? Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal? Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach? I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated! Thanks!
3
0
243
Mar ’25
Get NFC Data Identity card
Hello, I have to create an app in Swift that it scan NFC Identity card. It extract data and convert it to human readable data. I do it with below code import CoreNFC class NFCIdentityCardReader: NSObject , NFCTagReaderSessionDelegate { func tagReaderSessionDidBecomeActive(_ session: NFCTagReaderSession) { print("\(session.description)") } func tagReaderSession(_ session: NFCTagReaderSession, didInvalidateWithError error: any Error) { print("NFC Error: \(error.localizedDescription)") } var session: NFCTagReaderSession? func beginScanning() { guard NFCTagReaderSession.readingAvailable else { print("NFC is not supported on this device") return } session = NFCTagReaderSession(pollingOption: .iso14443, delegate: self, queue: nil) session?.alertMessage = "Hold your NFC identity card near the device." session?.begin() } func tagReaderSession(_ session: NFCTagReaderSession, didDetect tags: [NFCTag]) { guard let tag = tags.first else { session.invalidate(errorMessage: "No tag detected") return } session.connect(to: tag) { (error) in if let error = error { session.invalidate(errorMessage: "Connection error: \(error.localizedDescription)") return } switch tag { case .miFare(let miFareTag): self.readMiFareTag(miFareTag, session: session) case .iso7816(let iso7816Tag): self.readISO7816Tag(iso7816Tag, session: session) case .iso15693, .feliCa: session.invalidate(errorMessage: "Unsupported tag type") @unknown default: session.invalidate(errorMessage: "Unknown tag type") } } } private func readMiFareTag(_ tag: NFCMiFareTag, session: NFCTagReaderSession) { // Read from MiFare card, assuming it's formatted as an identity card let command: [UInt8] = [0x30, 0x04] // Example: Read command for block 4 let requestData = Data(command) tag.sendMiFareCommand(commandPacket: requestData) { (response, error) in if let error = error { session.invalidate(errorMessage: "Error reading MiFare: \(error.localizedDescription)") return } let readableData = String(data: response, encoding: .utf8) ?? response.map { String(format: "%02X", $0) }.joined() session.alertMessage = "ID Card Data: \(readableData)" session.invalidate() } } private func readISO7816Tag(_ tag: NFCISO7816Tag, session: NFCTagReaderSession) { let selectAppCommand = NFCISO7816APDU(instructionClass: 0x00, instructionCode: 0xA4, p1Parameter: 0x04, p2Parameter: 0x00, data: Data([0xA0, 0x00, 0x00, 0x02, 0x47, 0x10, 0x01]), expectedResponseLength: -1) tag.sendCommand(apdu: selectAppCommand) { (response, sw1, sw2, error) in if let error = error { session.invalidate(errorMessage: "Error reading ISO7816: \(error.localizedDescription)") return } let readableData = response.map { String(format: "%02X", $0) }.joined() session.alertMessage = "ID Card Data: \(readableData)" session.invalidate() } } } But I got null. I think that these data are encrypted. How can I convert them to readable data without MRZ, is it possible ? I need to get personal informations from Identity card via Core NFC. Thanks in advance. Best regards
0
0
201
Mar ’25