Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Do App Intent Domains work with Siri already?
Hi, guys. I'm writing about Apple Intelligence and I reached the point I have to explain App Intent Domains https://developer.apple.com/documentation/AppIntents/app-intent-domains but I noticed that there is a note explaining that these services are not available with Siri. I tried the example provided by Apple at https://developer.apple.com/documentation/AppIntents/making-your-app-s-functionality-available-to-siri and I can only make the intents work from the Shortcuts App, but not from Siri. Is this correct. App Intent Domains are still not available with Siri? Thanks
0
0
380
Nov ’25
Inquiry About GS1 DataBar Stacked Support in Vision Framework
Hello, I am currently developing an application that requires barcode scanning using Apple’s Vision framework (VNBarcodeSymbology). I noticed that the framework supports several GS1 DataBar symbologies, such as: VNBarcodeSymbology.gs1DataBar VNBarcodeSymbology.gs1DataBarExpanded VNBarcodeSymbology.gs1DataBarLimited However, I could not find any explicit reference to support for GS1 DataBar Stacked (both regular and expanded variants). Could you confirm whether GS1 DataBar Stacked is currently supported in VisionKit's DataScannerViewController or VNBarcodeObservation? If not, are there any plans to include support for this symbology in a future iOS update? This functionality is critical for my use case, as GS1 DataBar Stacked barcodes are widely used in retail, pharmaceuticals, and logistics, where space constraints prevent the use of standard GS1 DataBar formats. I appreciate any clarification on this matter and would be happy to provide additional details if needed.
0
0
400
Feb ’25
CreateML Training Object Detection Not using MPS
Hi everyone Im currently developing an object detection model that shall identify up to seven classes in an image. While im usually doing development with basic python and the ultralytics library, i thought i would like to give CreateML a shot. The experience is actually very nice, except for the fact that the model seem not to be using any ANE or GPU (MPS) for accelerated training. On https://developer.apple.com/machine-learning/create-ml/ it states: "On-device training Train models blazingly fast right on your Mac while taking advantage of CPU and GPU." Am I doing something wrong? Im running the training on Apple M1 Pro 16GB MacOS 26.1 (Tahoe) Xcode 26.1 (Build version 17B55) It would be super nice to get some feedback or instructions. Thank you in advance!
0
0
209
Nov ’25
Get NFC Data Identity card
Hello, I have to create an app in Swift that it scan NFC Identity card. It extract data and convert it to human readable data. I do it with below code import CoreNFC class NFCIdentityCardReader: NSObject , NFCTagReaderSessionDelegate { func tagReaderSessionDidBecomeActive(_ session: NFCTagReaderSession) { print("\(session.description)") } func tagReaderSession(_ session: NFCTagReaderSession, didInvalidateWithError error: any Error) { print("NFC Error: \(error.localizedDescription)") } var session: NFCTagReaderSession? func beginScanning() { guard NFCTagReaderSession.readingAvailable else { print("NFC is not supported on this device") return } session = NFCTagReaderSession(pollingOption: .iso14443, delegate: self, queue: nil) session?.alertMessage = "Hold your NFC identity card near the device." session?.begin() } func tagReaderSession(_ session: NFCTagReaderSession, didDetect tags: [NFCTag]) { guard let tag = tags.first else { session.invalidate(errorMessage: "No tag detected") return } session.connect(to: tag) { (error) in if let error = error { session.invalidate(errorMessage: "Connection error: \(error.localizedDescription)") return } switch tag { case .miFare(let miFareTag): self.readMiFareTag(miFareTag, session: session) case .iso7816(let iso7816Tag): self.readISO7816Tag(iso7816Tag, session: session) case .iso15693, .feliCa: session.invalidate(errorMessage: "Unsupported tag type") @unknown default: session.invalidate(errorMessage: "Unknown tag type") } } } private func readMiFareTag(_ tag: NFCMiFareTag, session: NFCTagReaderSession) { // Read from MiFare card, assuming it's formatted as an identity card let command: [UInt8] = [0x30, 0x04] // Example: Read command for block 4 let requestData = Data(command) tag.sendMiFareCommand(commandPacket: requestData) { (response, error) in if let error = error { session.invalidate(errorMessage: "Error reading MiFare: \(error.localizedDescription)") return } let readableData = String(data: response, encoding: .utf8) ?? response.map { String(format: "%02X", $0) }.joined() session.alertMessage = "ID Card Data: \(readableData)" session.invalidate() } } private func readISO7816Tag(_ tag: NFCISO7816Tag, session: NFCTagReaderSession) { let selectAppCommand = NFCISO7816APDU(instructionClass: 0x00, instructionCode: 0xA4, p1Parameter: 0x04, p2Parameter: 0x00, data: Data([0xA0, 0x00, 0x00, 0x02, 0x47, 0x10, 0x01]), expectedResponseLength: -1) tag.sendCommand(apdu: selectAppCommand) { (response, sw1, sw2, error) in if let error = error { session.invalidate(errorMessage: "Error reading ISO7816: \(error.localizedDescription)") return } let readableData = response.map { String(format: "%02X", $0) }.joined() session.alertMessage = "ID Card Data: \(readableData)" session.invalidate() } } } But I got null. I think that these data are encrypted. How can I convert them to readable data without MRZ, is it possible ? I need to get personal informations from Identity card via Core NFC. Thanks in advance. Best regards
0
0
201
Mar ’25
Code along with the Foundation Models framework
In this online session, you can code along with us as we build generative AI features into a sample app live in Xcode. We'll guide you through implementing core features like basic text generation, as well as advanced topics like guided generation for structured data output, streaming responses for dynamic UI updates, and tool calling to retrieve data or take an action. Check out these resources to get started: Download the project files: https://developer.apple.com/events/re... Explore the code along guide: https://developer.apple.com/events/re... Join the live Q&A: https://developer.apple.com/videos/pl... Agenda – All times PDT 10 a.m.: Welcome and Xcode setup 10:15 a.m.: Framework basics, guided generation, and building prompts 11 a.m.: Break 11:10 a.m.: UI streaming, tool calling, and performance optimization 11:50 a.m.: Wrap up All are welcome to attend the session. To actively code along, you'll need a Mac with Apple silicon that supports Apple Intelligence running the latest release of macOS Tahoe 26 and Xcode 26. If you have questions after the code along concludes please share a post here in the forums and engage with the community.
0
0
282
Sep ’25
Provide actionable feedback for the Foundation Models framework and the on-device LLM
We are really excited to have introduced the Foundation Models framework in WWDC25. When using the framework, you might have feedback about how it can better fit your use cases. Starting in macOS/iOS 26 Beta 4, the best way to provide feedback is to use #Playground in Xcode. To do so: In Xcode, create a playground using #Playground. Fore more information, see Running code snippets using the playground macro. Reproduce the issue by setting up a session and generating a response with your prompt. In the canvas on the right, click the thumbs-up icon to the right of the response. Follow the instructions on the pop-up window and submit your feedback by clicking Share with Apple. Another way to provide your feedback is to file a feedback report with relevant details. Specific to the Foundation Models framework, it’s super important to add the following information in your report: Language model feedback This feedback contains the session transcript, including the instructions, the prompts, the responses, etc. Without that, we can’t reason the model’s behavior, and hence can hardly take any action. Use logFeedbackAttachment(sentiment:issues:desiredOutput: ) to retrieve the feedback data of your current model session, as shown in the usage example, write the data into a file, and then attach the file to your feedback report. If you believe what you’d report is related to the system configuration, please capture a sysdiagnose and attach it to your feedback report as well. The framework is still new. Your actionable feedback helps us evolve the framework quickly, and we appreciate that. Thanks, The Foundation Models framework team
0
0
605
Aug ’25
Inquiry About Building an App for Object Detection, Background Removal, and Animation
Hi all! Nice to meet you., I am planning to build an iOS application that can: Capture an image using the camera or select one from the gallery. Remove the background and keep only the detected main object. Add a border (outline) around the detected object’s shape. Apply an animation along that border (e.g., moving light or glowing effect). Include a transition animation when removing the background — for example, breaking the background into pieces as it disappears. The app Capword has a similar feature for object isolation, and I’d like to build something like that. Could you please provide any guidance, frameworks, or sample code related to: Object segmentation and background removal in Swift (Vision or Core ML). Applying custom borders and shape animations around detected objects. Recognizing the object name (e.g., “person”, “cat”, “car”) after segmentation. Thank you very much for your support. Best regards, SINN SOKLYHOR
0
0
139
Nov ’25
CoreML Model Conversion Help
I’m trying to follow Apple’s “WWDC24: Bring your machine learning and AI models to Apple Silicon” session to convert the Mistral-7B-Instruct-v0.2 model into a Core ML package, but I’ve run into a roadblock that I can’t seem to overcome. I’ve uploaded my full conversion script here for reference: https://pastebin.com/T7Zchzfc When I run the script, it progresses through tracing and MIL conversion but then fails at the backend_mlprogram stage with this error: https://pastebin.com/fUdEzzKM The core of the error is: ValueError: Op "keyCache_tmp" (op_type: identity) Input x="keyCache" expects list, tensor, or scalar but got state[tensor[1,32,8,2048,128,fp16]] I’ve registered my KV-cache buffers in a StatefulMistralWrapper subclass of nn.Module, matching the keyCache and valueCache state names in my ct.StateType definitions, but Core ML’s backend pass reports the state tensor as an invalid input. I’m using Core ML Tools 8.3.0 on Python 3.9.6, targeting iOS18, and forcing CPU conversion (MPS wasn’t available). Any pointers on how to satisfy the handle_unused_inputs pass or properly declare/cache state for GQA models in Core ML would be greatly appreciated! Thanks in advance for your help, Usman Khan
0
0
184
May ’25
Hardware Support for Low Precision Data Types?
Hi all, I'm trying to find out if/when we can expect mxfp8/mxfp4 support on Apple Silicon. I've noticed that mlx now has casting data types, but all computation is still done in bf16. Would be great to reduce power consumption with support for these lower precision data types since edge inference is already typically done at a lower precision! Thanks in advance.
0
0
243
Nov ’25
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
208
Oct ’25
Efficient Clustering of Images Using VNFeaturePrintObservation.computeDistance
Hi everyone, I'm working with VNFeaturePrintObservation in Swift to compute the similarity between images. The computeDistance function allows me to calculate the distance between two images, and I want to cluster similar images based on these distances. Current Approach Right now, I'm using a brute-force approach where I compare every image against every other image in the dataset. This results in an O(n^2) complexity, which quickly becomes a bottleneck. With 5000 images, it takes around 10 seconds to complete, which is too slow for my use case. Question Are there any efficient algorithms or data structures I can use to improve performance? If anyone has experience with optimizing feature vector clustering or has suggestions on how to scale this efficiently, I'd really appreciate your insights. Thanks!
0
0
525
Feb ’25
SwiftUI App Intent throws error when using requestDisambiguation with @Parameter property wrapper
I'm implementing an App Intent for my iOS app that helps users plan trip activities. It only works when run as a shortcut but not using voice through Siri. There are 2 issues: The ShortcutsTripEntity will only accept a voice input for a specific trip but not others. I'm stuck with a throwing error when trying to use requestDisambiguation() on the activity day @Parameter property. How do I rectify these issues. This is blocking me from completing a critical feature that lets users quickly plan activities through Siri and Shortcuts. Expected behavior for trip input: The intent should make Siri accept the spoken trip input from any of the options. Actual behavior for trip input: Siri only accepts the same trip when spoken but accepts any when selected by click/touch. Expected behavior for day input: Siri should accept the spoken selected option. Actual behavior for day input: Siri only accepts an input by click/touch but yet throws an error at runtime I'm happy to provide more code. But here's the relevant code: struct PlanActivityTestIntent: AppIntent { @Parameter(title: "Activity Day") var activityDay: ShortcutsItineraryDayEntity @Parameter( title: "Trip", description: "The trip to plan an activity for", default: ShortcutsTripEntity(id: UUID().uuidString, title: "Untitled trip"), requestValueDialog: "Which trip would you like to add an activity to?" ) var tripEntity: ShortcutsTripEntity @Parameter(title: "Activity Title", description: "The title of the activity", requestValueDialog: "What do you want to do or see?") var title: String @Parameter(title: "Activity Day", description: "Activity Day", default: ShortcutsItineraryDayEntity(itineraryDay: .init(itineraryId: UUID(), date: .now), timeZoneIdentifier: "UTC")) var activityDay: ShortcutsItineraryDayEntity func perform() async throws -> some ProvidesDialog { // ...other code... let tripsStore = TripsStore() // load trips and map them to entities try? await tripsStore.getTrips() let tripsAsEntities = tripsStore.trips.map { trip in let id = trip.id ?? UUID() let title = trip.title return ShortcutsTripEntity(id: id.uuidString, title: title, trip: trip) } // Ask user to select a trip. This line would doesn't accept a voice // answer. Why? let selectedTrip = try await $tripEntity.requestDisambiguation( among: tripsAsEntities, dialog: .init( full: "Which of the \(tripsAsEntities.count) trip would you like to add an activity to?", supporting: "Select a trip", systemImageName: "safari.fill" ) ) // This line throws an error let selectedDay = try await $activityDay.requestDisambiguation( among: daysAsEntities, dialog:"Which day would you like to plan an activity for?" ) } } Here are some related images that might help:
0
0
180
Jul ’25
CoreML Unified Memory failure/silent exit on long video tasks (M1 Mac 32GB)
Hi Apple Engineers, I am experiencing a potential memory management bug with CoreML on M1 Mac (32GB Unified Memory). When processing long video files (approx. 12,000 frames) using a CoreML execution provider, the system often completes the 'Analysing' phase but fails to transition into 'Processing'. It simply exits silently or hits an import error (scipy). However, if I split the same task into small 20-frame segments, it works perfectly at high speeds (~40 FPS). This suggests the hardware is capable, but there is an issue with memory fragmentation or resource cleanup during long-running CoreML sessions. Is there a way to force a VRAM/Unified Memory flush via CLI, or is this a known limitation for large frame indexing?
0
0
399
1w
AppShortcuts.xcstrings does not translate each invocation phrase option separately, just the first
Due to our min iOS version, this is my first time using .xcstrings instead of .strings for AppShortcuts. When using the migrate .strings to .xcstrings Xcode context menu option, an .xcstrings catalog is produced that, as expected, has each invocation phrase as a separate string key. However, after compilation, the catalog changes to group all invocation phrases under the first phrase listed for each intent (see attached screenshot). It is possible to hover in blank space on the right and add more translations, but there is no 1:1 key matching requirement to the phrases on the left nor a requirement that there are the same number of keys in one language vs. another. (The lines just happen to align due to my window size.) What does that mean, practically? Do all sub-phrases in each language in AppShortcuts.xcstrings get processed during compilation, even if there isn't an equivalent phrase key declared in the AppShortcut (e.g., the ja translation has more phrases than the English)? (That makes some logical sense, as these phrases need not be 1:1 across languages.) In the AppShortcut declaration, if I delete all but the top invocation phrase, does nothing change with Siri? Is there something I'm doing incorrectly? struct WatchShortcuts: AppShortcutsProvider { static var appShortcuts: [AppShortcut] { AppShortcut( intent: QuickAddWaterIntent(), phrases: [ "\(.applicationName) log water", "\(.applicationName) log my water", "Log water in \(.applicationName)", "Log my water in \(.applicationName)", "Log a bottle of water in \(.applicationName)", ], shortTitle: "Log Water", systemImageName: "drop.fill" ) } }
0
0
280
Aug ’25
is it possible to let siri monitor phone calls, and notify me when a certain trigger happens?
the specific context is that i would like to build an agent that monitors my phone call (with a customer support for example), and simiply identify whether or not im still put on hold, and notify me when im not. currently after reading the doc, i dont think its possible yet, but im so annoyed by the customer support calls that im willing to go the distance and see if theres any way.
0
0
133
Jun ’25
How to Ensure Controlled and Contextual Responses Using Foundation Models ?
Hi everyone, I’m currently exploring the use of Foundation models on Apple platforms to build a chatbot-style assistant within an app. While the integration part is straightforward using the new FoundationModel APIs, I’m trying to figure out how to control the assistant’s responses more tightly — particularly: Ensuring the assistant adheres to a specific tone, context, or domain (e.g. hospitality, healthcare, etc.) Preventing hallucinations or unrelated outputs Constraining responses based on app-specific rules, structured data, or recent interactions I’ve experimented with prompt, systemMessage, and few-shot examples to steer outputs, but even with carefully generated prompts, the model occasionally produces incorrect or out-of-scope responses. Additionally, when using multiple tools, I'm unsure how best to structure the setup so the model can select the correct pathway/tool and respond appropriately. Is there a recommended approach to guiding the model's decision-making when several tools or structured contexts are involved? Looking forward to hearing your thoughts or being pointed toward related WWDC sessions, Apple docs, or sample projects.
0
0
122
Jul ’25
Is there anywhere to get precompiled WhisperKit models for Swift?
If try to dynamically load WhipserKit's models, as in below, the download never occurs. No error or anything. And at the same time I can still get to the huggingface.co hosting site without any headaches, so it's not a blocking issue. let config = WhisperKitConfig( model: "openai_whisper-large-v3", modelRepo: "argmaxinc/whisperkit-coreml" ) So I have to default to the tiny model as seen below. I have tried so many ways, using ChatGPT and others, to build the models on my Mac, but too many failures, because I have never dealt with builds like that before. Are there any hosting sites that have the models (small, medium, large) already built where I can download them and just bundle them into my project? Wasted quite a large amount of time trying to get this done. import Foundation import WhisperKit @MainActor class WhisperLoader: ObservableObject { var pipe: WhisperKit? init() { Task { await self.initializeWhisper() } } private func initializeWhisper() async { do { Logging.shared.logLevel = .debug Logging.shared.loggingCallback = { message in print("[WhisperKit] \(message)") } let pipe = try await WhisperKit() // defaults to "tiny" self.pipe = pipe print("initialized. Model state: \(pipe.modelState)") guard let audioURL = Bundle.main.url(forResource: "44pf", withExtension: "wav") else { fatalError("not in bundle") } let result = try await pipe.transcribe(audioPath: audioURL.path) print("result: \(result)") } catch { print("Error: \(error)") } } }
0
0
100
Jun ’25