Processes & Concurrency

RSS for tag

Discover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.

Concurrency Documentation

Posts under Processes & Concurrency subtopic

Post

Replies

Boosts

Views

Activity

SSMenuAgent consuming lots of CPU
My load average on a largely idle system is around 22, going up to 70 or so periodically; SSMenuAgent seems to be consuming lots of CPU (and, looking at spindump, it certainly seems busy), but... it's not happening on any other system whose screens I am observing. (Er, I know about load average limitations, the process is also consuming 70-98% CPU according to both top and Activity Monitor.) Since this machine (although idle) has our network extension, I'm trying to figure out if this is due to that, or of this is generally expected. Anyone?
2
0
445
May ’25
NSFileCoordinator Swift Concurrency
I'm working on implementing file moving with NSFileCoordinator. I'm using the slightly newer asynchronous API with the NSFileAccessIntents. My question is, how do I go about notifying the coordinator about the item move? Should I simply create a new instance in the asynchronous block? Or does it need to be the same coordinator instance? let writeQueue = OperationQueue() public func saveAndMove(data: String, to newURL: URL) { let oldURL = presentedItemURL! let sourceIntent = NSFileAccessIntent.writingIntent(with: oldURL, options: .forMoving) let destinationIntent = NSFileAccessIntent.writingIntent(with: newURL, options: .forReplacing) let coordinator = NSFileCoordinator() coordinator.coordinate(with: [sourceIntent, destinationIntent], queue: writeQueue) { error in if let error { return } do { // ERROR: Can't access NSFileCoordinator because it is not Sendable (Swift 6) coordinator.item(at: oldURL, willMoveTo: newURL) try FileManager.default.moveItem(at: oldURL, to: newURL) coordinator.item(at: oldURL, didMoveTo: newURL) } catch { print("Failed to move to \(newURL)") } } }
0
0
106
Apr ’25
Waiting for an Async Result in a Synchronous Function
This comes up over and over, here on the forums and elsewhere, so I thought I’d post my take on it. If you have questions or comments, start a new thread here on the forums. Put it in the App & System Services > Processes & Concurrency subtopic and tag it with Concurrency. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Waiting for an Async Result in a Synchronous Function On Apple platforms there is no good way for a synchronous function to wait on the result of an asynchronous function. Lemme say that again, with emphasis… On Apple platforms there is no good way for a synchronous function to wait on the result of an asynchronous function. This post dives into the details of this reality. Prime Offender Imagine you have an asynchronous function and you want to call it from a synchronous function: func someAsynchronous(input: Int, completionHandler: @escaping @Sendable (_ output: Int) -> Void) { … processes `input` asynchronously … … when its done, calls the completion handler with the result … } func mySynchronous(input: Int) -> Int { … calls `someAsynchronous(…)` … … waits for it to finish … … results the result … } There’s no good way to achieve this goal on Apple platforms. Every approach you might try has fundamental problems. A common approach is to do this working using a Dispatch semaphore: func mySynchronous(input: Int) -> Int { fatalError("DO NOT WRITE CODE LIKE THIS") let sem = DispatchSemaphore(value: 0) var result: Int? = nil someAsynchronous(input: input) { output in result = output sem.signal() } sem.wait() return result! } Note This code produces a warning in the Swift 5 language mode which turns into an error in the Swift 6 language mode. You can suppress that warning with, say, a Mutex. I didn’t do that here because I’m focused on a more fundamental issue here. This code works, up to a point. But it has unavoidable problems, ones that don’t show up in a basic test but can show up in the real world. The two biggest ones are: Priority inversion Thread pools I’ll cover each in turn. Priority Inversion Apple platforms have a mechanism that helps to prevent priority inversion by boosting the priority of a thread if it holds a resource that’s needed by a higher-priority thread. The code above defeats that mechanism because there’s no way for the system to know that the threads running the work started by someAsynchronous(…) are being waited on by the thread blocked in mySynchronous(…). So if that blocked thread has a high-priority, the system can’t boost the priority of the threads doing the work. This problem usually manifests in your app failing to meet real-time goals. An obvious example of this is scrolling. If you call mySynchronous(…) from the main thread, it might end up waiting longer than it should, resulting in noticeable hitches in the scrolling. Threads Pools A synchronous function, like mySynchronous(…) in the example above, can be called by any thread. If the thread is part of a thread pool, it consumes a valuable resource — that is, a thread from the pool — for a long period of time. The raises the possibility of thread exhaustion, that is, where the pool runs out of threads. There are two common thread pools on Apple platforms: Dispatch Swift concurrency These respond to this issue in different ways, both of which can cause you problems. Dispatch can choose to over-commit, that is, start a new worker thread to get work done while you’re hogging its existing worker threads. This causes two problems: It can lead to thread explosion, where Dispatch starts dozens and dozens of threads, which all end up blocked. This is a huge waste of resources, notably memory. Dispatch has an hard limit to how many worker threads it will create. If you cause it to over-commit too much, you’ll eventually hit that limit, putting you in the thread exhaustion state. In contrast, Swift concurrency’s thread pool doesn’t over-commit. It typically has one thread per CPU core. If you block one of those threads in code like mySynchronous(…), you limit its ability to get work done. If you do it too much, you end up in the thread exhaustion state. WARNING Thread exhaustion may seem like just a performance problem, but that’s not the case. It’s possible for thread exhaustion to lead to a deadlock, which blocks all thread pool work in your process forever. There’s a trade-off here. Swift concurrency doesn’t over-commit, so it can’t suffer from thread explosion but is more likely deadlock, and vice versa for Dispatch. Bargaining Code like the mySynchronous(…) function shown above is fundamentally problematic. I hope that the above has got you past the denial stage of this analysis. Now let’s discuss your bargaining options (-: Most folks don’t set out to write code like mySynchronous(…). Rather, they’re working on an existing codebase and they get to a point where they have to synchronously wait for an asynchronous result. At that point they have the choice of writing code like this or doing a major refactor. For example, imagine you’re calling mySynchronous(…) from the main thread in order to update a view. You could go down the problematic path, or you could refactor your code so that: The current value is always available to the main thread. The asynchronous code updates that value in an observable way. The main thread code responds to that notification by updating the view from the current value. This refactoring may or may not be feasible given your product’s current architecture and timeline. And if that’s the case, you might end up deploying code like mySynchronous(…). All engineering is about trade-offs. However, don’t fool yourself into thinking that this code is correct. Rather, make a note to revisit this choice in the future. Async to Async Finally, I want to clarify that the above is about synchronous functions. If you have a Swift async function, there is a good path forward. For example: func mySwiftAsync(input: Int) async -> Int { let result = await withCheckedContinuation { continuation in someAsynchronous(input: input) { output in continuation.resume(returning: output) } } return result } This looks like it’s blocking the current thread waiting for the result, but that’s not what happens under the covers. Rather, the Swift concurrency worker thread that calls mySwiftAsync(…) will return to the thread pool at the await. Later, when someAsynchronous(…) calls the completion handler and you resume the continuation, Swift will grab a worker thread from the pool to continue running mySwiftAsync(…). This is absolutely normal and doesn’t cause the sorts of problems you see with mySynchronous(…). IMPORTANT To keep things simple I didn’t implement cancellation in mySwiftAsync(…). In a real product it’s important to support cancellation in code like this. See the withTaskCancellationHandler(operation:onCancel:isolation:) function for the details.
0
0
809
Oct ’25
Background Assets Extension and DeviceCheck
Hi, I have some questions regarding the Background Assets Extension and DeviceCheck framework. Goal: Ensure that only users who have purchased the app can access the server's API without any user authentication using for example DeviceCheck framework and within a Background Assets Extension. My app relies on external assets, which I'm loading using the Background Assets Extension. I'm trying to determine if it's possible to obtain a challenge from the server and send a DeviceCheck assertion during this process within the Background Assets Extension. So far, I only receive session-wide authentication challenges—specifically NSURLAuthenticationMethodServerTrust in the Background Assets Extensio. I’ve tested with Basic Auth (NSURLAuthenticationMethodHTTPBasic) just for experimentation, but the delegate func backgroundDownload( _ download: BADownload, didReceive challenge: URLAuthenticationChallenge ) async -> (URLSession.AuthChallengeDisposition, URLCredential?) is never called with that authentication method. It seems task-specific challenges aren't coming through at all. Also, while the DCAppAttestService API appears to be available on macOS, DCAppAttestService.isSupported always returns false (in my testing), which suggests it's not actually supported on macOS. Can anyone confirm if that’s expected behavior?
2
0
149
May ’25
How to view documentation and example codes for Grand Central Dispatch for C
Hi, I am programming in C and would like to use Grand Central Dispatch for parallel computing (I mostly do physics based simulations). I remember there used to be example codes provided by Apple, but can't find those now. Instead I get the plain documentation. May anyone point me to the correct resources? It will be greatly appreciated. Thanks ☺.
2
0
140
Oct ’25
Is there an API to programmatically obtain an XPC Service's execution context?
Hello! I'm writing a System Extension that is an Endpoint Security client. And I want to Deny/Allow executing some XPC Service processes (using the ES_EVENT_TYPE_AUTH_EXEC event) depending on characteristics of a process that starts the XPC Service. For this purpose, I need an API that could allow me to obtain an execution context of the XPC Service process. I can obtain this information using the "sudo launchctl procinfo <pid>" command (e.g. I can use the "domain = pid/3428" part of the output for this purpose). Also, I know that when the xpcproxy process is started, it gets as the arguments a service name and a pid of the process that requests the service so I can grasp the execution context from xpcproxy launching. But are these ways to obtain this info legitimate?
2
0
169
Apr ’25
Background Refresh Stalls After Charging on watchOS 26
Hello everyone, I’m a new developer still learning as I go. I’m building a simple watchOS app that tracks Apple Watch battery consumption, records hourly usage data, and uses that information to predict battery life in hours. I’ve run into an issue where background refresh completely stalls after charging and never recovers, regardless of what I do. The only way to restore normal behavior is to restart the watch. Background refresh can work fine for days, but if the watch is charging and a scheduled background refresh tries to run during that period, it appears to be deferred—and then remains in that deferred state indefinitely. Even reopening the app or scheduling new refreshes doesn’t recover it. Has anyone else encountered this behavior? Is there a reliable workaround? I’ve seen a few reports suggesting that there may be a regression in scheduleBackgroundRefresh() on watchOS 26, where tasks are never delivered after certain states. Any insights or confirmations would be greatly appreciated. Thank you!
1
0
184
Oct ’25
Proper initialization - views, dependencies, laoder and viewcontroller
So i am pretty new to Xcode, but i have been using Python and other language for some while. But I am quite new to the game of view and view control. So it may be that i have over complicated this a bit - and it may be that I have some wrong understanding of the dependencies and appcontroller (that i thought would be a good idea). So here we have a main file we call it app.swift, we have a startupmanager.swift, a appcoordinator and a dependeciescontainer. But it may be that this is either a overkill - or that I am doing it wrong. So my thought was that i had a dependeciecontainer, a appcoordinator for the views and a startupmanager that controll the initialized fetching. I have controlled the memory when i run it - checking if it is higher, lower eg - but it was first when i did my 2 days profile i saw a lot of new errors, like this: Fikser(7291,0x204e516c0) malloc: xzm: failed to initialize deferred reclamation buffer (46). and i also get macro errors, probably from the @Query in my feedview. So my thought was that a depencecie manager and a startupmanager was a good idea together with a app coordinator. But maybe I am wrong - maybe this is not a good idea? Or maybe I am doing some things twice? I have added a lot of prints and debugs for checking. But it seems that it starts off to heavy? import SwiftUI import Combine @MainActor class AppCoordinator: ObservableObject { @Published var isLoggedIn: Bool = false private var authManager: AuthenticationManager = .shared private var cancellables = Set<AnyCancellable>() private let startupManager: StartupManager private let container: DependencyContainer @Published var path = NavigationPath() enum Screen: Hashable, Identifiable { case profile case activeJobs case offers case message var id: Self { self } } init(container: DependencyContainer) { self.container = container self.startupManager = container.makeStartupManager() setupObserving() startupManager.start() print("AppCoordinator initialized!") } private func setupObserving() { authManager.$isAuthenticated .receive(on: RunLoop.main) .sink { [weak self] isAuthenticated in self?.isLoggedIn = isAuthenticated } .store(in: &cancellables) } func userDidLogout() { authManager.logout() path.removeLast(path.count) } func showProfile() { path.append(Screen.profile) } func showActiveJobs() { path.append(Screen.activeJobs) } func showOffers() { path.append(Screen.offers) } func showMessage() { path.append(Screen.message) } @ViewBuilder func viewForDestination(_ destination: Screen) -> some View { switch destination { case .profile: ProfileView() case .activeJobs: ActiveJobsView() case .offers: OffersView() case .message: ChatView() } } @ViewBuilder func viewForJob(_ job: Job) -> some View { PostDetailView( job: job, jobUserDetailsRepository: container.makeJobUserDetailsRepository() ) } @ViewBuilder func viewForProfileSubview(_ destination: ProfileView.ProfileSubviews) -> some View { switch destination{ case .personalSettings: PersonalSettingView() case .historicData: HistoricDataView() case .transactions: TransactionView() case .helpCenter: HelpcenterView() case .helpContract: HelpContractView() } } enum HomeBarDestinations: Hashable, Identifiable { case postJob case jobPosting var id: Self { self } } @ViewBuilder func viewForHomeBar(_ destination: HomeBarView.HomeBarDestinations) -> some View { switch destination { case .postJob: PostJobView() } } } import Apollo import FikserAPI import SwiftData class DependencyContainer { static var shared: DependencyContainer! private let modelContainer: ModelContainer static func initialize(with modelContainer: ModelContainer) { shared = DependencyContainer(modelContainer: modelContainer) } private init(modelContainer: ModelContainer) { self.modelContainer = modelContainer print("DependencyContainer being initialized at ") } @MainActor private lazy var userData: UserData = { return UserData(apollo: Network.shared.apollo) }() @MainActor private lazy var userDetailsRepository: UserDetailsRepository = { return UserDetailsRepository(userData: makeUserData()) }() @MainActor private lazy var jobData: JobData = { return JobData(apollo: Network.shared.apollo) }() @MainActor private lazy var jobRepository: JobRepository = { return JobRepository(jobData: makeJobData(), modelContainer: modelContainer) }() @MainActor func makeUserData() -> UserData { return userData } @MainActor func makeUserDetailsRepository() -> UserDetailsRepository { return userDetailsRepository } @MainActor func makeStartupManager() -> StartupManager { return StartupManager( userDetailsRepository: makeUserDetailsRepository(), jobRepository: makeJobRepository(), authManager: AuthenticationManager.shared, lastUpdateRepository: makeLastUpdateRepository() ) } @MainActor func makeJobData() -> JobData { return jobData } @MainActor func makeJobRepository() -> any JobRepositoryProtocol { return jobRepository } @MainActor private lazy var jobUserData: JobUserData = { return JobUserData(apollo: Network.shared.apollo) }() @MainActor private lazy var jobUserDetailsRepository: JobUserDetailsRepository = { return JobUserDetailsRepository(jobUserData: makeJobUserData()) }() @MainActor func makeJobUserData() -> JobUserData { return jobUserData } @MainActor func makeJobUserDetailsRepository() -> JobUserDetailsRepository { return jobUserDetailsRepository } @MainActor private lazy var lastUpdateData: LastUpdateData = { return LastUpdateData(apollo: Network.shared.apollo) }() @MainActor private lazy var lastUpdateRepository: LastUpdateRepository = { return LastUpdateRepository(lastUpdateData: makeLastUpdateData()) }() @MainActor func makeLastUpdateData() -> LastUpdateData { return lastUpdateData } @MainActor func makeLastUpdateRepository() -> LastUpdateRepository { return lastUpdateRepository } }```
1
0
346
Feb ’25
iOS26 background lock screen Blood glucose monitoring Bluetooth low energy disconnect sleep
First, our app communicates with our blood glucose monitor (CGM) using Bluetooth Low Energy (BLE). On an iPhone 14 Pro with iOS 26.0.1, Bluetooth communication works properly even when the app is in the background and locked. Even if the phone and CGM are disconnected, the app continues to scan in the background and reconnects when the phone and CGM are back in close proximity. It won't be dormant in the background or when the screen is locked. This effectively ensures that diabetic users can monitor their blood glucose levels in real time. However, after using iOS 26.0.1 on the iPhone 17, we've received user feedback about frequent disconnections in the background. Our logs indicate that Bluetooth communication is easily disconnected when switching to the background, and then easily dormant by the system, especially when the user's screen is locked. This situation significantly impacts users' blood glucose monitoring, and users are unacceptable. What can be done?
1
0
168
Oct ’25
BGContinuedProcessingTask UI
When I use BGContinuedProcessingTask to submit a task, my iPhone 12 immediately shows a notification banner displaying the task’s progress. However, on my iPhone 15 Pro Max, there’s no response — the progress UI only appears in the Dynamic Island after I background the app. Why is there a difference in behavior between these two devices? Is it possible to control the UI so that the progress indicator only appears when the app moves to the background?
2
0
218
Oct ’25
SMAppService
Hello, https://developer.apple.com/forums/thread/802443 https://developer.apple.com/documentation/servicemanagement/updating-helper-executables-from-earlier-versions-of-macos https://developer.apple.com/documentation/ServiceManagement/updating-your-app-package-installer-to-use-the-new-service-management-api#Run-the-sample-launch-agent Read these. Earlier we had a setup with SMJobBless, now we have migrated to SMAppService. Everything is working fine, the new API seems easier to manage, but we are having issues with updating the daemon. I was wondering, what is the right process for updating a daemon from app side? What we are doing so far: App asks daemon for version If version is lower than expected: daemon.unregister(), wait a second and daemon.register() again. The why? We have noticed that unregistering/registering multiple times, of same daemon, can cause the daemon to stop working as expected. The daemon toggle in Mac Settings -> Login Items & Extensions can be on or off, but the app can still pickup daemon running, but no daemon running in Activity monitor. Registration/unregistration can start failing and nothing helps to resolve this, only reseting with sfltool resetbtm and a restart seems to does the job. This is usually noticeable for test users, testing same daemon version with different app builds. In production app, we also increase the bundle version of daemon in plist, in test apps we - don't. I haven't found any sources of how the update of pre-bundled app daemon should work. Initial idea is register/unregister, but from what I have observed, this seems to mess up after multiple registrations. I have a theory, that sending the daemon a command to kill itself after app update, would load the latest daemon. Also, I haven't observed for daemon, with different build versions to update automatically. What is the right way to update a daemon with SMAppService setup? Thank you in advance.
5
0
204
Nov ’25
BGContinuedProcessingTask what's the point?
Hi, This post is coming from frustration of working on using BGContinuedProcessingTask for almost 2 weeks, trying to get it to actually complete in the background after the app is backgrounded. My process will randomlly finish and not finish and have no idea why. I'm properly using and setting task?.progress.totalUnitCount = [some number] task?.progress.completedUnitCount = [increment as processed] I know this, because it all looks propler as long as the app insn't backgrounded. So it's not a progress issue. The task will ALWAYS complete. The device has full power, as it is plugged in as I run from within Xcode. So, it's not a power issue. Yes, the process will take a few minutes, but I thought that is BGContinuedProcessingTask purpose in iOS 26. For long running process that a user could place in the background and leave the app, assuming the process would actually finish. Why bother introducing a feature that only works with short tasks that don't actually need long running time in the first place.
7
0
227
Oct ’25
Prevent my app from background activity
When I search, it's always people trying to do stuff in the background. I want my app to only do stuff when it is active. And this post https://developer.apple.com/forums/thread/685525 seems to have prevented replies from the start. Which means it's just a documentation page and does not belong in the discussion forums at all, because it prevents all discussion.
1
0
94
May ’25
TCC Permission Inheritance Failure: Swift Parent -> Python Child
TCC Permission Inheritance for Python Process Launched by Swift App in Enterprise Deployment We are developing an enterprise monitoring application that requires a hybrid Swift + Python architecture due to strict JAMF deployment restrictions. We must deploy a macOS application via ABM/App Store Connect, but our core monitoring logic is in a Python daemon. We need to understand the feasibility and best practices for TCC permission inheritance in this specific setup. Architecture Component Bundle ID Role Deployment Swift Launcher com.athena.AthenaSentry Requests TCC permissions, launches Python child process. Deployed via ABM/ASC. Python Daemon com.athena.AthenaSentry.Helper Core monitoring logic using sensitive APIs. Nested in Contents/Helpers/. Both bundles are signed with the same Developer ID and share the same Team ID. Required Permissions The Python daemon needs to access the following sensitive TCC-controlled services: Screen Recording (kTCCServiceScreenCapture) - for capturing screenshots. Input Monitoring (kTCCServiceListenEvent) - for keystroke/mouse monitoring. Accessibility (kTCCServiceAccessibility) - a prerequisite for Input Monitoring. Attempts & Workarounds We have attempted to resolve this using: Entitlement Inheritance: Added com.apple.security.inherit to the Helper's entitlements. Permission Proxy: Swift app maintains active event taps to try and "hold" the permissions for the child. Foreground Flow: Keeping the Swift app in the foreground during permission requests. Questions Is this architecture supported? Can a Swift parent app successfully request TCC permissions that a child process can then use? TCC Inheritance: What are the specific rules for TCC permission inheritance between parent/child processes in enterprise environment? What's the correct approach for this enterprise use case? Should we: Switch to a Single Swift App? (i.e., abandon the Python daemon and rewrite the core logic natively in Swift). Use XPC Services? (instead of launching the child process directly).
3
0
182
Nov ’25
BGContinuedProcessingTask expiring unpredictably
I've adopted the new BGContinuedProcessingTask in iOS 26, and it has mostly been working well in internal testing. However, in production I'm getting reports of the tasks failing when the app is put into the background. A bit of info on what I'm doing: I need to download a large amount of data (around 250 files) and process these files as they come down. The size of the files can vary: for some tasks each file might be around 10MB. For other tasks, the files might be 40MB. The processing is relatively lightweight, but the volume of data means the task can potentially take over an hour on slower internet connections (up to 10GB of data). I set the totalUnitCount based on the number of files to be downloaded, and I increment completedUnitCount each time a file is completed. After some experimentation, I've found that smaller tasks (e.g. 3GB, 10MB per file) seem to be okay, but larger tasks (e.g. 10GB, 40MB per file) seem to fail, usually just a few seconds after the task is backgrounded (and without even opening any other apps). I think I've even observed a case where the task expired while the app was foregrounded! I'm trying to understand what the rules are with BGContinuedProcessingTask and I can see at least four possibilities that might be relevant: Is it necessary to provide progress updates at some minimum rate? For my larger tasks, where each file is ~40MB, there might be 20 or 30 seconds between progress updates. Does this make it more likely that the task will be expired? For larger tasks, the total time to complete can be 60–90 mins on slower internet connections. Is there some maximum amount of time the task can run for? Does the system attempt some kind of estimate of the overall time to complete and expire the task on that basis? The processing on each file is relatively lightweight, so most of the time the async stream is awaiting the next file to come down. Does the OS monitor the intensity of workload and suspend the task if it appears to be idle? I've noticed that the task UI sometimes displays a message, something along the lines of "Do you want to continue this task?" with a "Continue" and "Stop" option. What happens if the user simply ignores or doesn't see this message? Even if I tap "Continue" the task still seems to fail sometimes. I've read the docs and watched the WWDC video, but there's not a whole lot of information on the specific issues I mention above. It would be great to get some clarity on this, and I'd also appreciate any advice on alternative ways I could approach my specific use case.
7
0
313
3w
How to Handle Asynchronous Operations in BGContinuedProcessingTask
I would like to know whether BGContinuedProcessingTaskRequest supports executing asynchronous tasks internally, or if it can only execute synchronous tasks within BGContinuedProcessingTaskRequest? Our project is very complex, and we now need to use BGContinuedProcessingTaskRequest to perform some long-running operations when the app enters the background (such as video encoding/decoding & export). However, our export interface is an asynchronous function, for example video.export(callback: FinishCallback). This export call returns immediately, and when the export completes internally, it calls back through the passed-in callback. So when I call BGTaskScheduler.shared.register to register a BGContinuedProcessingTask, what should be the correct approach? Should I directly call video.export(nil) without any waiting, or should I wait for the export function to complete in the callback? For example: BGTaskScheduler.shared.register(forTaskWithIdentifier: "com.xxx.xxx.xxx.xxx", using: nil) { task in guard let continuedTask = task as? BGContinuedProcessingTask else { task.setTaskCompleted(success: false) return } let scanner = SmartAssetsManager.shared let semaphore = DispatchSemaphore(value: 0) continuedTask.expirationHandler = { logError(items: "xwxdebug finished.") semaphore.signal() } logInfo(items: "xwxdebug start!") video.export { _ in semaphore.signal() } semaphore.wait() logError(items: "xwxdebug finished!") }
3
0
108
Nov ’25
What happens after BGContinuedProcessingTask "expires"?
If I create a BGContinuedProcessingTaskRequest, register it, and then "do work" within it appropriately reporting progress, and before my task has finished doing all the work it had to do, its expirationHandler triggers... does the task later try again? Or does it lose the execution opportunity until the app is next re-launched to the foreground? In my testing, I never saw my task execute again once expired (which suggests the latter?). I was able to easily force this expiry by starting my task, backgrounding my app, then launching the iOS Camera App. My example is just using test code inspired from https://developer.apple.com/documentation/backgroundtasks/performing-long-running-tasks-on-ios-and-ipados let request = BGContinuedProcessingTaskRequest(identifier: taskIdentifier, title: "Video Upload", subtitle: "Starting Upload") request.strategy = .queue BGTaskScheduler.shared.register(forTaskWithIdentifier: taskIdentifier, using: nil) { task in guard let task = task as? BGContinuedProcessingTask else { return } print("i am a good task") var wasExpired = false task.expirationHandler = { wasExpired = true } let progress = task.progress progress.totalUnitCount = 100 while !progress.isFinished && !wasExpired { progress.completedUnitCount += 1 let formattedProgress = String(format: "%.2f", progress.fractionCompleted * 100) task.updateTitle(task.title, subtitle: "Completed \(formattedProgress)%") sleep(1) } if progress.isFinished { print ("i was a good task") task.setTaskCompleted(success: true) } else { print("i was not a good task") task.setTaskCompleted(success: false) } } try? BGTaskScheduler.shared.submit(request) Apologies if this is clearly stated somewhere and I'm missing it.
1
0
75
Nov ’25
Can we create a bundled non-interactive macOS application which uses CFRunLoop only(instead of using NSApplicationMain to run NSRunLoop)?
I am developing a macOS non-interactive macOS application which does not show any ui. i want to block main thread and do all the work on worker thread . Once done with work in worker thread, want to unblock main thread by exiting event loop to terminate application. Because i dont want to show any UI or use any Foundation/Cocoa functionality, i am thinking of using CFRunLoop to block main thread from exiting until i finish my work in worker thread. When i tried this in a project, I am able to finish work in worker thread after block main thread using CFRunLoop. I also want this application to be a bundled application, which can be launched by double clicking on application bundle . But when i tried it in my xcode project by launching it using double clicking on application bundle, application keeps on toggling/bouncing in the dock menu with a status "Not responding". Although i am able to complete my work in worker thread. import Foundation let runLoop = CFRunLoopGetCurrent() func workerTask() { DispatchQueue.global().async { print("do its work") sleep(5) // do some work print("calling exit event loop") CFRunLoopStop(runLoop) print ("unblocking main thread") } } workerTask () // blocking main thread print ("blocked main thread") CFRunLoopRun() print ("exit") Why i am getting this application bouncing in doc menu behavior ? I tried by using NSApplicationMain instead of CFRunLoop in my project, in that case i didnt get this behavior . Does NSApplicationMain does some extra work before starting NSRunLoop which i am not doing while using CFRunLoop, which is showing this toggling/Bouncing application icon in Dock menu ? or Is this bouncing app icon issue is related to run loop i am using which is CFRunLoop ? Note : If i dont use a bundled application and use a commandline application then i am able to do all steps in worker thread and exit main thread as i wanted after finishing my work . But i need to do all this in application which can be launched using double clicking (bundled applcation). If not by using CFRunLoop, then how can i achive this ? - Create a application which shows no UI and do all work in worker thread while main thread is blocked. Once work is done unblock main thread and exit. And user should be able to launch application using double click the application icon.
3
0
425
Mar ’25