I'm playing with the new Vision API for iOS18, specifically with the new CalculateImageAestheticsScoresRequest API.
When I try to perform the image observation request I get this error:
internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}")
The code is pretty straightforward:
if let image = image {
let request = CalculateImageAestheticsScoresRequest()
Task {
do {
let cgImg = image.cgImage!
let observations = try await request.perform(on: cgImg)
let description = observations.description
let score = observations.overallScore
print(description)
print(score)
} catch {
print(error)
}
}
}
I'm running it on a M2 using the simulator.
Is it a bug? What's wrong?
General
RSS for tagExplore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Created
i'm trying to create an NLModel within a MessageFilterExtension handler.
The code works fine in the main app, but when I try to use it in the extension it fails to initialize. Just this doesn't even work and gets the error below.
Single line that fails.
SMS_Classifier is the class xcode generated for my model. This line works fine in the main app.
let mlModel = try SMS_Classifier(configuration: MLModelConfiguration()).model
Error
Unable to locate Asset for contextual word embedding model for local en.
MLModelAsset: load failed with error Error Domain=com.apple.CoreML Code=0 "initialization of text classifier model with model data failed" UserInfo={NSLocalizedDescription=initialization of text classifier model with model data failed}
Any ideas?
Hello,
I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case.
TL;DR
The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16.
Longer description
The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic).
iOS 16 - iPhone SE 3rd Gen (A15 Bioinc)
iOS 16 uses the ANE and results in fast prediction, load and compilation times.
iOS 17 - iPhone 13 Pro (A15 Bionic)
iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower.
Code To Reproduce
The following is my code I'm using to export my PyTorch vision model (using coremltools).
I've used the same code for the past few months with sensational results on iOS 16.
# Convert to Core ML using the Unified Conversion API
coreml_model = ct.convert(
model=traced_model,
inputs=[image_input],
outputs=[ct.TensorType(name="output")],
classifier_config=ct.ClassifierConfig(class_names),
convert_to="neuralnetwork",
# compute_precision=ct.precision.FLOAT16,
compute_units=ct.ComputeUnit.ALL
)
System environment:
Xcode version: 15.0
coremltools version: 7.0.0
OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode)
Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0
Additional context
This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16
If anyone has a similar experience, I'd love to hear more.
Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know.
Thank you!
Did something change on face detection / Vision Framework on iOS 15?
Using VNDetectFaceLandmarksRequest and reading the VNFaceLandmarkRegion2D to detect eyes is not working on iOS 15 as it did before. I am running the exact same code on an iOS 14 and iOS 15 device and the coordinates are different as seen on the screenshot?
Any Ideas?