I have a mac (M4, MacBook Pro) running Tahoe 26.0 beta. I am running Xcode beta.
I can run code that uses the LLM in a #Preview { }.
But when I try to run the same code in the simulator, I get the 'device not ready' error and I see the following in the Settings app.
Is there anything I can do to get the simulator to past this point and allowing me to test on it with Apple's LLM?
Foundation Models
RSS for tagDiscuss the Foundation Models framework which provides access to Apple’s on-device large language model that powers Apple Intelligence to help you perform intelligent tasks specific to your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I get the following dyld error on an iPad Pro with Xcode 26 beta 4:
Symbol not found: _$s16FoundationModels20LanguageModelSessionC7prewarm12promptPrefixyAA6PromptVSg_tF
Any advice?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I've been successfully integrating the Foundation Models framework into my healthcare app using structured generation with @Generable schemas. While my initial testing (20-30 iterations) shows promising results, I need to validate consistency and reliability at scale before production deployment.
Question
Is there a recommended approach for automated, large-scale testing of Foundation Models responses?
Specifically, I'm looking to:
Automate 1000+ test iterations with consistent prompts and structured schemas
Measure response consistency across identical inputs
Validate structured output reliability (proper schema adherence, no generation failures)
Collect performance metrics (TTFT, TPS) for optimization
Specific Questions
Framework Limitations: Are there any undocumented rate limits or thermal throttling considerations for rapid session creation/destruction?
Performance Tools: Can Xcode's Foundation Models Instrument be used programmatically, or only through Instruments UI?
Automation Integration: Any recommendations for integrating with testing frameworks?
Session Reuse: Is it better to reuse a single LanguageModelSession or create fresh sessions for each test iteration?
Use Case Context
My wellness app provides medically safe activity recommendations based on user health profiles. The Foundation Models framework processes health context and generates structured recommendations for exercises, nutrition, and lifestyle activities. Given the safety implications of providing health-related guidance, I need rigorous validation to ensure the model consistently produces appropriate, well-formed recommendations across diverse user scenarios and health conditions.
Has anyone in the community built similar large-scale testing infrastructure for Foundation Models? Any insights on best practices or potential pitfalls would be greatly appreciated.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hey,
Would be great to have an equivalent of toolCallId for both toolCall and toolResult in the transcript. Otherwise, it is hard to connect tool calls with their respective responses, when there were multiple parallel calls to the same tool.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am trying to create a slightly different version of the content tagging code in the documentation:
https://developer.apple.com/documentation/foundationmodels/systemlanguagemodel/usecase/contenttagging
In the playground I am getting an "Inference Provider crashed with 2:5" error.
I have no idea what that means or how to address the error. Any assistance would be appreciated.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I have a Generable type with many elements. I am using a stream() to incrementally process the output (Generable.PartiallyGenerated?) content.
At the end, I want to pass the final version (not partially generated) to another function.
I cannot seem to find a good way to convert from a MyGenerable.PartiallyGenerated to a MyGenerable.
Am I missing some functionality in the APIs?
Problem:
We trained a LoRA adapter for Apple's FoundationModels framework using their TAMM (Training Adapter for Model Modification)
toolkit v0.2.0 on macOS 26 beta 4. The adapter trains successfully but fails to load with: "Adapter is not compatible with the
current system base model."
TAMM 2.0 contains export/constants.py with: BASE_SIGNATURE = "9799725ff8e851184037110b422d891ad3b92ec1"
Findings:
Adapter Export Process:
In export_fmadapter.py
def write_metadata(...):
self_dict[MetadataKeys.BASE_SIGNATURE] = BASE_SIGNATURE # Hardcoded value
The Compatibility Check:
- When loading an adapter, Apple's system compares the adapter's baseModelSignature with the current system model
- If they don't match: compatibleAdapterNotFound error
- The error doesn't reveal the expected signature
Questions:
- How is BASE_SIGNATURE derived from the base model?
- Is it SHA-1 of base-model.pt or some other computation?
- Can we compute the correct signature for beta 4?
- Or do we need Apple to release TAMM v0.3.0 with updated signature?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Tags:
Core ML
Create ML
tensorflow-metal
Apple Intelligence
On macOS Tahoe26.0, iOS 26.0 (23A5287g) not emulator, Xcode 26.0 beta 3 (17A5276g)
Follow this tutorial Testing your asset packs locally The start the test server command I use this command line to start the test server:xcrun ba-serve --host 192.168.0.109 test.aar The terminal showThe content displayed on the terminal is: Loading asset packs…
Loading the asset pack at “test.aar”…
Listening on port 63125…… Choose an identity in the panel to continue. Listening on port 63125…
running the project, Xcode reports an error:Download failed: Could not connect to the server. I use iPhone safari visit this website: https://192.168.0.109:63125, on the page display "Hello, world!"
There are too few error messages in both of the above questions. I have no idea what the specific reasons are.I hope someone can offer some guidance. Best Regards.
{
"assetPackID": "testVideoAssetPack",
"downloadPolicy": {
"prefetch": {
"installationEventTypes": ["firstInstallation", "subsequentUpdate"]
}
},
"fileSelectors": [
{
"file": "video/test.mp4"
}
],
"platforms": [
"iOS"
]
}
this is my Manifest.json
Hi,
I’m developing an app targeting iOS 26, using the new FoundationModels framework to perform on-device LLM inference. I’m currently testing memory usage.
Does the memory used by FoundationModels—including model weights, KV cache, and any inference-related buffers—count toward my app’s Jetsam memory limit, or is any of it managed separately by the system?
I may need to run two concurrent inferences, each with a 4096-token context window. Is this explicitly supported or allowed by FoundationModels on iOS 26? Would this significantly increase the risk of memory-based termination?
Thanks in advance for any clarification.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm working on localizing my prompts to support multiple languages, and in some cases my prompts has String interpolated Generable objects. for example:
"Given the following workout routine: \(routine), suggest one additional exercise to complement it."
In the Strings dictionary, I'm only able to select String, Int or Double parameters using %@ and %lld.
Has anyone found a way to accomplish this?
My sample app has been working with the following code:
func call(arguments: Arguments) async throws -> ToolOutput {
var temp:Int
switch arguments.city {
case .singapore: temp = Int.random(in: 30..<40)
case .china: temp = Int.random(in: 10..<30)
}
let content = GeneratedContent(temp)
let output = ToolOutput(content)
return output
}
However in 26 beta 5, ToolOutput no longer available, please advice what has changed.
I'm using Xcode 26 Beta 5 and get errors on any generation I try, however harmless, when wrapped in the #Playground macro.
#Playground {
let session = LanguageModelSession()
let topic = "pandas"
let prompt = "Write a safe and respectful story about (topic)."
let response = try await session.respond(to: prompt)
Not seeing any issues on simulator or device. Anyone else seeing this or have any ideas?
Thanks for any help!
Version 26.0 beta 5 (17A5295f)
macOS 26.0 Beta (25A5316i)
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hey,
I've been trying to write an AI agent for OpenAI's GPT-5, but using the @Generable Tool types from the FoundationModels framework, which is super awesome btw!
I'm having trouble implementing the tool calling, though. When I receive a tool call from the OpenAI api, I do the following:
Find the tool in my [any Tool] array via the tool name I get from the model
if let tool = tools.first(where: { $0.name == functionCall.name }) {
// ...
}
Parse the arguments of the tool call via GeneratedContent(json:)
let generatedContent = try GeneratedContent(json: functionCall.arguments)
Pass the tool and arguments to a function that calls tool.call(arguments: arguments) and returns the tool's output type
private func execute<T: Tool>(_ tool: T, with generatedContent: GeneratedContent) async throws -> T.Output {
let arguments = try T.Arguments.init(generatedContent)
return try await tool.call(arguments: arguments)
}
Up to this point, everything is working as expected. However, the tool's output type is any PromptRepresentable and I have no idea how to turn that into something that I can encode and send back to the model. I assumed there might be a way to turn it into a GeneratedContent but there is no fitting initializer.
Am I missing something or is this not supported? Without a way to return the output to an external provider, it wouldn't really be possible to use FoundationModels Tool type I think. That would be unfortunate because it's implemented so elegantly.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Encountered a few times when the answer get "stuck" (I am now at beta 6).
This is an example.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello,
My app fully relies on the new Foundation Models. Since Foundation Models require Apple Intelligence, I want to ensure that only devices capable of running Apple Intelligence can install my app.
When checking the UIRequiredDeviceCapabilities property for a suitable value, I found that iphone-performance-gaming-tier seems the closest match. Based on my research:
On iPhone, this effectively limits installation to iPhone 15 Pro or later.
On iPad, it ensures M1 or newer devices.
This exactly matches the hardware requirements for Apple Intelligence.
However, after setting iphone-performance-gaming-tier, I noticed that on iPad, Game Mode (Game Overlay) is automatically activated, and my app is treated as a game.
My questions are:
Is there a more appropriate UIRequiredDeviceCapabilities value that would enforce the same Apple Intelligence hardware requirements without triggering Game Mode?
If not, is there another way to restrict installation to devices meeting Apple Intelligence requirements?
Is there a way to prevent Game Mode from appearing for my app while still using this capability restriction?
Thanks in advance for your help.
Dear Apple Foundation Models Development Team,
I am a developer integrating Apple Foundation Models (AFM) into my app and encountered the exceededContextWindowSize error when exceeding the 4096-token limit.
Proposal:
I suggest Apple develop a tool to estimate the token count of a prompt before sending it to the model. This tool could be integrated into FoundationModels Framework for ease of use.
Benefits:
A token estimation tool would help developers manage the context window limit and optimize performance. I hope Apple considers this proposal soon.
Thank you!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello,
I am testing the sample project provided here: Bringing advanced speech-to-text capabilities to your app.
On both macOS 26.0 beta and iOS 26.0 beta, the app crashes immediately on launch with a dyld "Symbol not found" error related to FoundationModels.framework.
It feels like this may be related to testing primarily on newer Apple Silicon devices, as I am seeing consistent crashes on an Intel MacBook and on an older iPhone device.
I would appreciate any insight, confirmation, or guidance on whether this is a known limitation or if there is a workaround. Is it planned to be resolved soon?
Environment
macOS:
Device: MacBook Pro (Intel)
Processor: 2 GHz Quad-Core Intel Core i5
Graphics: Intel Iris Plus Graphics 1536 MB
Memory: 16 GB 3733 MHz LPDDR4X
OS: macOS Tahoe Version 26.0 Beta (25A5338b)
iOS:
Device: iPhone 11
Model Number: MHDD3HN/A
OS: iOS 26.0
Xcode:
Version: 26.0 beta 3 (17A5276g)
Crash (macOS)
Abort signal received. Excerpt from crash dump:
dyld`__abort_with_payload:
0x7ff80e3ad4a0 <+0>: movl $0x2000209, %eax
0x7ff80e3ad4a5 <+5>: movq %rcx, %r10
0x7ff80e3ad4a8 <+8>: syscall
-> 0x7ff80e3ad4aa <+10>: jae 0x7ff80e3ad4b4
Console:
dyld[9819]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC
Referenced from: /Users/userx/Library/Developer/Xcode/DerivedData/SwiftTranscriptionSampleApp-*/Build/Products/Debug/SwiftTranscriptionSampleApp.app/Contents/MacOS/SwiftTranscriptionSampleApp.debug.dylib
Expected in: /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels
Crash (iOS)
Abort signal received. Excerpt from crash dump:
dyld`__abort_with_payload:
0x18f22b4b0 <+0>: mov x16, #0x209
0x18f22b4b4 <+4>: svc #0x80
-> 0x18f22b4b8 <+8>: b.lo 0x18f22b4d8
Console
dyld[2080]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC
Referenced from: /private/var/containers/Bundle/Application/.../SwiftTranscriptionSampleApp.app/SwiftTranscriptionSampleApp.debug.dylib
Expected in: /System/Library/Frameworks/FoundationModels.framework/FoundationModels
Question
Is this crash expected on Intel Macs and older iPhone models with the beta SDKs?
Is there an official statement on whether macOS 26.x releases support Intel, or it exists only until macOS 26.1?
Any suggested workarounds for testing this sample project on current hardware?
Is this a known limitation for the 26.0 beta, and if so, should we expect a fix in 26.0 or only in subsequent releases?
Attaching screenshots for reference.
Thank you in advance.
I keep getting the error “An unsupported language or locale was used.”
Is there any documentation that specifies the accepted languages or locales in Foundation model?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm a bit new to the LLM stuff and with Foundation Models. My understanding is that there is a token limit of around 4K.
I want to process the contents of files which may be quite large. I first tried going the Tool route but that didn't work out so I then tried manually chunking the text to keep things under the limit.
It mostly works except that every now and then it'll exceed the limit. This happens even when the chunks are less than 100 characters. Instructions themselves are about 500 characters but still overall, well below 1000 characters per prompt, all told, which, in my limited understanding, should not result in 4K tokens being parsed.
Any ideas on what is going on here?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Was just wondering why the foundation model documentation is no longer available, thanks!
https://developer.apple.com/documentation/FoundationModels
Topic:
Machine Learning & AI
SubTopic:
Foundation Models