Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Activity

Networking Resources
General: Forums subtopic: App & System Services > Networking TN3151 Choosing the right networking API Networking Overview document — Despite the fact that this is in the archive, this is still really useful. TLS for App Developers forums post Choosing a Network Debugging Tool documentation WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi? TN3135 Low-level networking on watchOS TN3179 Understanding local network privacy Adapt to changing network conditions tech talk Understanding Also-Ran Connections forums post Extra-ordinary Networking forums post Foundation networking: Forums tags: Foundation, CFNetwork URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms. Moving to Fewer, Larger Transfers forums post Testing Background Session Code forums post Network framework: Forums tag: Network Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms. Building a custom peer-to-peer protocol sample code (aka TicTacToe) Implementing netcat with Network Framework sample code (aka nwcat) Configuring a Wi-Fi accessory to join a network sample code Moving from Multipeer Connectivity to Network Framework forums post NWEndpoint History and Advice forums post Network Extension (including Wi-Fi on iOS): See Network Extension Resources Wi-Fi Fundamentals TN3111 iOS Wi-Fi API overview Wi-Fi Aware framework documentation Wi-Fi on macOS: Forums tag: Core WLAN Core WLAN framework documentation Wi-Fi Fundamentals Secure networking: Forums tags: Security Apple Platform Security support document Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS). WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems. Available trusted root certificates for Apple operating systems support article Requirements for trusted certificates in iOS 13 and macOS 10.15 support article About upcoming limits on trusted certificates support article Apple’s Certificate Transparency policy support article What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements. Technote 2232 HTTPS Server Trust Evaluation Technote 2326 Creating Certificates for TLS Testing QA1948 HTTPS and Test Servers Miscellaneous: More network-related forums tags: 5G, QUIC, Bonjour On FTP forums post Using the Multicast Networking Additional Capability forums post Investigating Network Latency Problems forums post WirelessInsights framework documentation iOS Network Signal Strength forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
0
0
3.7k
3w
`setTunnelNetworkSettings` errors in a packet tunnel provider.
We've received logs and have spuriously reproduced the following behavior: calls to setTunnelNetworkSettings completing with NETunnelProviderError where the code is networkSettingsInvalid, and the error domain string is empty. After subsequent calls to setTunnelNetworkSettings, the tunnel is stopped via the userInitiated stop reason within around 1 second from the first failure. This happens after a number of successful calls to setTunnelNetworkSettings have been made in the lifetime of a given packet tunnel process. We can confirm that no user ever initiates the disconnection. We can confirm that the only significant changes between the different calls to setTunnelNetworkSettings are that the parameters contain different private IPs for the tunnel settings - the routes and DNS settings remain the same. In our limited testing, it seems that we can replicate the behavior we're observing by removing the VPN profile while the tunnel is up. However, we are certain the same behavior happens under other circumstances without any user interaction. Is this what memory starvation looks like? Or is this something else? Our main concern is that the tunnel is killed and it is not brought back up even though our profile is set to be on-demand. It's difficult to give any promises about leaks to our users if the tunnel can be killed at any point and not be brought back. The spurious disconnections are a security issue for our app, we'd like to know if there's anything we can do differently so that this does not happen. We tried to get DTS, but given that we have no way to reproduce this issue with a minimal project. But we can reproduce the behavior (kill the tunnel by removing it's profile) from a minimal Xcode project, is that considered good enough for a reproduction?
0
0
58
1w
Flow Divert behavior
Hello, Our app uses Network Extension / Packet Tunnel Provider to establish VPN connections on macOS and iOS. We have observed that after creating a utun device and adding any IPv4 routes (NEPacketTunnelNetworkSettings.IPv4Settings), the OS automatically adds several host routes via utun to services such as Akamai, Apple Push, etc. These routes appear to correspond to TCP flows that were active at the moment the VPN connection was established. When a particular TCP flow ends, the corresponding host route is deleted. We understand this is likely intended to avoid breaking existing TCP connections. However, we find the behavior of migrating existing TCP flows to the new utun interface simply because any IPv4 route is added somewhat questionable. This approach would make sense in a "full-tunnel" scenario — for example, when all IPv4 traffic (e.g., 0.0.0.0/0) is routed through the tunnel — but not necessarily in a "split-tunnel" configuration where only specific IPv4 routes are added. Is there any way to control or influence this behavior? Would it be possible for FlowDivert to differentiate between full-tunnel and split-tunnel cases, and only preserve existing TCP flows via utun in the full-tunnel scenario? Thank you.
0
0
102
Apr ’25
Accessory Setup Kit (BLE) not showing multiple options nor the advertising name
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device. I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
0
1
107
Oct ’25
iOS26 captive portal detection changes?
Hi all, I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device. It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server. When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served. I serve any requests to /hotspot-detect.html with my captive portal page (index.html). This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it). But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working iOS18 always succeeds; iOS26 always fails. Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
0
0
247
Oct ’25
Network Relay errors out with "Privacy proxy failed with error 53"
I'm using NERelayManager to set Relay configuration which all works perfectly fine. I then do a curl with the included domain and while I see QUIC connection succeeds with relay server and H3 request goes to the server, the connection gets abruptly closed by the client with "Software caused connection abort". Console has this information: default 09:43:04.459517-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Transport protocol connected (quic) default 09:43:04.459901-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.131s default 09:43:04.460745-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Joined protocol connected (http3) default 09:43:04.461049-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.133s default 09:43:04.465115-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancel default 09:43:04.465238-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancelled [C2 FCB1CFD1-4BF9-4E37-810E-81265D141087 192.168.4.139:53898<->192.168.4.197:4433] Connected Path: satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi Duration: 0.121s, QUIC @0.000s took 0.000s, TLS 1.3 took 0.111s bytes in/out: 2880/4322, packets in/out: 4/8, rtt: 0.074s, retransmitted bytes: 0, out-of-order bytes: 0 ecn packets sent/acked/marked/lost: 3/1/0/0 default 09:43:04.465975-0700 curl nw_flow_disconnected [C2 192.168.4.197:4433 cancelled multipath-socket-flow ((null))] Output protocol disconnected default 09:43:04.469189-0700 curl nw_endpoint_proxy_receive_report [C1.1 IPv4#124bdc4d:80 in_progress proxy (satisfied (Path is satisfied), interface: en0[802.11], ipv4, ipv6, dns, proxy, uses wifi)] Privacy proxy failed with error 53 ([C1.1.1] masque Proxy: http://192.168.4.197:4433) default 09:43:04.469289-0700 curl [C1.1.1 192.168.4.197:4433 failed socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:failed_connect @0.141s, error Software caused connection abort Relay server otherwise works fine with our QUIC MASQUE clients but not with built-in macOS MASQUE client. Anything I'm missing?
0
0
117
May ’25
VPN profile corruption
We've often observed connectivity issues from our VPN app that can only be remedied by removing the VPN profile. It happens to a small but significant amount of our users, this often happens more when the app is updated, but the VPN profile corruption can happen without that too. The behavior we're observing is that any socket opened by the packet tunnel process just fails to send any data whatsoever. Stopping and restarting the packet tunnel does not help. The only solution is to remove the profile and create a new one. We believe our app is not the only one suffering from this issue as other VPN apps have added a specific button to refresh their VPN profile, which seemingly deletes and re-created the VPN configuration profile. Previously, we've caught glimpses of this in a sysdiagnose, but that was a while ago and we found nothing of interest. Alas, the sysdiagnose was not captured on a device with the network extension diagnostic profile (it was not a developer device). I would love to get technical support with this, as our bug reports have gone unanswered for long enough, yet we are still struggling with this issue. But of course, there is no minimum viable xcodeproject that reproduces this. Is there anything we can feasibly do to help with this issue? Is it even an acknowledged issue?
0
0
31
3d
iOS Network Signal Strength
This issue has cropped up many times here on DevForums. Someone recently opened a DTS tech support incident about it, and I used that as an opportunity to post a definitive response here. If you have questions or comments about this, start a new thread and tag it with Network so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" iOS Network Signal Strength The iOS SDK has no general-purpose API that returns Wi-Fi or cellular signal strength in real time. Given that this has been the case for more than 10 years, it’s safe to assume that it’s not an accidental omission but a deliberate design choice. For information about the Wi-Fi APIs that are available on iOS, see TN3111 iOS Wi-Fi API overview. Network performance Most folks who ask about this are trying to use the signal strength to estimate network performance. This is a technique that I specifically recommend against. That’s because it produces both false positives and false negatives: The network signal might be weak and yet your app has excellent connectivity. For example, an iOS device on stage at WWDC might have terrible WWAN and Wi-Fi signal but that doesn’t matter because it’s connected to the Ethernet. The network signal might be strong and yet your app has very poor connectivity. For example, if you’re on a train, Wi-Fi signal might be strong in each carriage but the overall connection to the Internet is poor because it’s provided by a single over-stretched WWAN. The only good way to determine whether connectivity is good is to run a network request and see how it performs. If you’re issuing a lot of requests, use the performance of those requests to build a running estimate of how well the network is doing. Indeed, Apple practices what we preach here: This is exactly how HTTP Live Streaming works. Remember that network performance can change from moment to moment. The user’s train might enter or leave a tunnel, the user might step into a lift, and so on. If you build code to estimate the network performance, make sure it reacts to such changes. Keeping all of the above in mind, iOS 26 beta has two new APIs related to this issue: Network framework now offers a linkQuality property. See this post for my take on how to use this effectively. The WirelessInsights framework can notify you of anticipated WWAN condition changes. But what about this code I found on the ’net? Over the years various folks have used various unsupported techniques to get around this limitation. If you find code on the ’net that, say, uses KVC to read undocumented properties, or grovels through system logs, or walks the view hierarchy of the status bar, don’t use it. Such techniques are unsupported and, assuming they haven’t broken yet, are likely to break in the future. But what about Hotspot Helper? Hotspot Helper does have an API to read Wi-Fi signal strength, namely, the signalStrength property. However, this is not a general-purpose API. Like the rest of Hotspot Helper, this is tied to the specific use case for which it was designed. This value only updates in real time for networks that your hotspot helper is managing, as indicated by the isChosenHelper property. But what about MetricKit? MetricKit is so cool. Amongst other things, it supports the MXCellularConditionMetric payload, which holds a summary of the cellular conditions while your app was running. However, this is not a real-time signal strength value. But what if I’m working for a carrier? This post is about APIs in the iOS SDK. If you’re working for a carrier, discuss your requirements with your carrier’s contact at Apple. Revision History 2025-07-02 Updated to cover new features in the iOS 16 beta. Made other minor editorial changes. 2022-12-01 First posted.
0
0
4.4k
Jul ’25
Don’t Try to Get the Device’s IP Address
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Don’t Try to Get the Device’s IP Address I regularly see questions like: How do I find the IP address of the device? How do I find the IP address of the Wi-Fi interface? How do I identify the Wi-Fi interface? I also see a lot of really bad answers to these questions. That’s understandable, because the questions themselves don’t make sense. Networking on Apple platforms is complicated and many of the things that are ‘obviously’ true are, in fact, not true at all. For example: There’s no single IP address that represents the device, or an interface. A device can have 0 or more interfaces, each of which can have 0 or more IP addresses, each of which can be IPv4 and IPv6. A device can have multiple interfaces of a given type. It’s common for iPhones to have multiple WWAN interfaces, for example. It’s not possible to give a simple answer to any of these questions, because the correct answer depends on the context. Why do you need this particular information? What are you planning to do with it? This post describes the scenarios I most commonly encounter, with my advice on how to handle each scenario. IMPORTANT BSD interface names, like en0, are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0. If you write code that relies on a hard-coded interface name, it will fail in some situations. Service Discovery Some folks want to identify the Wi-Fi interface so that they can run a custom service discovery protocol over it. Before you do that, I strongly recommend that you look at Bonjour. This has a bunch of advantages: It’s an industry standard [1]. It’s going to be more efficient on the ‘wire’. You don’t have to implement it yourself, you can just call an API [2]. For information about the APIs available, see TN3151 Choosing the right networking API. If you must implement your own service discovery protocol, don’t think in terms of finding the Wi-Fi interface. Rather, write your code to work with all Wi-Fi interfaces, or perhaps even all Ethernet-like interfaces. That’s what Apple’s Bonjour implementation does, and it means that things will work in odd situations [3]. To find all Wi-Fi interfaces, get the interface list and filter it for ones with the Wi-Fi functional type. To find all broadcast-capable interfaces, get the interface list and filter it for interfaces with the IFF_BROADCAST flag set. If the service you’re trying to discover only supports IPv4, filter out any IPv6-only interfaces. For advice on how to do this, see Interface List and Network Interface Type in Network Interface APIs. When working with multiple interfaces, it’s generally a good idea to create a socket per interface and then bind that socket to the interface. That ensures that, when you send a packet, it’ll definitely go out the interface you expect. For more information on how to implement broadcasts correctly, see Broadcasts and Multicasts, Hints and Tips. [1] Bonjour is an Apple term for: RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses RFC 6762 Multicast DNS RFC 6763 DNS-Based Service Discovery [2] That’s true even on non-Apple platforms. It’s even true on most embedded platforms. If you’re talking to a Wi-Fi accessory, see Working with a Wi-Fi Accessory. [3] Even if the service you’re trying to discover can only be found on Wi-Fi, it’s possible for a user to have their iPhone on an Ethernet that’s bridged to a Wi-Fi. Why on earth would they do that? Well, security, of course. Some organisations forbid their staff from using Wi-Fi. Logging and Diagnostics Some folks want to log the IP address of the Wi-Fi interface, or the WWAN, or both for diagnostic purposes. This is quite feasible, with the only caveat being there may be multiple interfaces of each type. To find all interfaces of a particular type, get the interface list and filter it for interfaces with that functional type. See Interface List and Network Interface Type in Network Interface APIs. Interface for an Outgoing Connection There are situations where you need to get the interface used by a particular connection. A classic example of that is FTP. When you set up a transfer in FTP, you start with a control connection to the FTP server. You then open a listener and send its IP address and port to the FTP server over your control connection. What IP address should you use? There’s an easy answer here: Use the local IP address for the control connection. That’s the one that the server is most likely to be able to connect to. To get the local address of a connection: In Network framework, first get the currentPath property and then get its localEndpoint property. In BSD Sockets, use getsockname. See its man page for details. Now, this isn’t a particularly realistic example. Most folks don’t use FTP these days [1] but, even if they do, they use FTP passive mode, which avoids the need for this technique. However, this sort of thing still does come up in practice. I recently encountered two different variants of the same problem: One developer was implementing VoIP software and needed to pass the devices IP address to their VoIP stack. The best IP address to use was the local IP address of their control connection to the VoIP server. A different developer was upgrading the firmware of an accessory. They do this by starting a server within their app and sending a command to the accessory to download the firmware from that server. Again, the best IP address to use is the local address of the control connection. [1] See the discussion in TN3151 Choosing the right networking API. Listening for Connections If you’re listening for incoming network connections, you don’t need to bind to a specific address. Rather, listen on all local addresses. In Network framework, this is the default for NWListener. In BSD Sockets, set the address to INADDR_ANY (IPv4) or in6addr_any (IPv6). If you only want to listen on a specific interface, don’t try to bind to that interface’s IP address. If you do that, things will go wrong if the interface’s IP address changes. Rather, bind to the interface itself: In Network framework, set either the requiredInterfaceType property or the requiredInterface property on the NWParameters you use to create your NWListener. In BSD Sockets, set the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket option. How do you work out what interface to use? The standard technique is to get the interface list and filter it for interfaces with the desired functional type. See Interface List and Network Interface Type in Network Interface APIs. Remember that their may be multiple interfaces of a given type. If you’re using BSD Sockets, where you can only bind to a single interface, you’ll need to create multiple listeners, one for each interface. Listener UI Some apps have an embedded network server and they want to populate a UI with information on how to connect to that server. This is a surprisingly tricky task to do correctly. For the details, see Showing Connection Information for a Local Server. Outgoing Connections In some situations you might want to force an outgoing connection to run over a specific interface. There are four common cases here: Set the local address of a connection [1]. Force a connection to run over a specific interface. Force a connection to run over a type of interface. Force a connection to run over an interface with specific characteristics. For example, you want to download some large resource without exhausting the user’s cellular data allowance. The last case should be the most common — see the Constraints section of Network Interface Techniques — but all four are useful in specific circumstances. The following sections explain how to tackle these tasks in the most common networking APIs. [1] This implicitly forces the connection to use the interface with that address. For an explanation as to why, see the discussion of scoped routing in Network Interface Techniques. Network Framework Network framework has good support for all of these cases. Set one or more of the following properties on the NWParameters object you use to create your NWConnection: requiredLocalEndpoint property requiredInterface property prohibitedInterfaces property requiredInterfaceType property prohibitedInterfaceTypes property prohibitConstrainedPaths property prohibitExpensivePaths property Foundation URL Loading System URLSession has fewer options than Network framework but they work in a similar way: Set one or more of the following properties on the URLSessionConfiguration object you use to create your session: allowsCellularAccess property allowsConstrainedNetworkAccess property allowsExpensiveNetworkAccess property Note While these session configuration properties are also available on URLRequest, it’s better to configure this on the session. There’s no option that forces a connection to run over a specific interface. In most cases you don’t need this — it’s better to use the allowsConstrainedNetworkAccess and allowsExpensiveNetworkAccess properties — but there are some situations where that’s necessary. For advice on this front, see Running an HTTP Request over WWAN. BSD Sockets BSD Sockets has very few options in this space. One thing that’s easy and obvious is setting the local address of a connection: Do that by passing the address to bind. Alternatively, to force a connection to run over a specific interface, set the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options. Revision History 2025-01-21 Added a link to Broadcasts and Multicasts, Hints and Tips. Made other minor editorial changes. 2023-07-18 First posted.
0
0
2.5k
Jan ’25
NWEndpoint History and Advice
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits. If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" NWEndpoint History and Advice A tale that spans three APIs, two languages, and ten years. The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems. IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath. The History In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix. Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table: iOS | macOS | tvOS | watchOS | visionOS --- + ----- + ---- + ------- + -------- 9 | 10.11 | 9 | 2 | - 12 | 10.14 | 12 | 5 | - 18 | 15 | 18 | 11 | 2 At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code. The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider. These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath. At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection. However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs: A Swift API that follows Swift conventions, for example, the connection type is called NWConnection A C API that follows C conventions, for example, the connection type is called nw_connection_t These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API. This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint. The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation. However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages. In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced: -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t. But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries: … - Name: NWEndpoint SwiftPrivate: true … SwiftVersions: - Version: 5.0 … - Name: NWEndpoint SwiftPrivate: false … The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type. The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build. The Advice This sections discusses specific cases in this transition. NWEndpoint and NWPath In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint. In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type. Direct and Through-Tunnel TCP Connections in Swift To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS. To create a connection through the tunnel, replace code like this: let c = self.createTCPConnectionThroughTunnel(…) with code like this: let params = NWParameters.tcp params.requiredInterface = self.virtualInterface let c = NWConnection(to: …, using: params) This is for TCP but the same basic process applies to UDP. UDP and App Proxies in Swift If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this: class AppProxyProvider: NEAppProxyProvider { … override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool { … } } with this: class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling { … func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool { … } } Creating a Network Rule To create an NWHostEndpoint, replace code like this: let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345") let r = NENetworkRule(destinationHost: ep, protocol: .TCP) with this: let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345) let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP) Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
0
0
199
Jul ’25
TLS for App Developers
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol. IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS. TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers. Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers. Server Certificates For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that: The client gets a copy of the server’s certificate. The client knows that the server holds the private key matching the public key in that certificate. In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N. Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority. Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world. Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here: Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile. This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension). Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed. In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension. Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms. App Transport Security (ATS) adds its own security checks. Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example: You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail. You might loosen security by adding your own CA’s root certificate as a trusted anchor. IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do. Mutual TLS The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client. Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate. mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection). At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate. Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example: Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA. Some servers just check the certificate against a list of known trusted client certificates. When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because: The server already has the intermediate certificates required to build a chain of trust from that leaf to its root. There’s no point sending the root, as I discussed above in the context of server trust evaluation. However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements. Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)). One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision. When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using: The distinguishedNames property, if you’re using URLSession The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework [1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions. Self-Signed Certificates Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority. One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail. Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing. TLS Standards RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic) RFC 2246 The TLS Protocol Version 1.0 RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1 RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2 RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3 RFC 4347 Datagram Transport Layer Security RFC 6347 Datagram Transport Layer Security Version 1.2 RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History: 2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK. 2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes. 2023-02-28 Added an explanation mTLS acceptable certificate authorities. 2022-12-02 Added links to the DTLS RFCs. 2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes. 2022-06-03 Added a link to TLS For Accessory Developers. 2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes. 2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates. 2018-10-29 Minor editorial updates. 2016-11-11 First posted.
0
0
8k
Nov ’25
Working with a Wi-Fi Accessory
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Working with a Wi-Fi Accessory Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them. Note While my focus here is iOS, much of the info in this post applies to all Apple platforms. IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation. IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter. Accessory Categories I classify Wi-Fi accessories into three different categories. A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs. An example of a bound accessory is a Wi-Fi capable printer. A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet. An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it. A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is. An example of this is a Wi-Fi to WWAN gateway. Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges. Do You Control the Firmware? The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does. Simple Improvements If you do control the firmware, I strongly encourage you to: Support IPv6 Implement Bonjour [1] These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier: Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets. Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network. [1] Bonjour is an Apple term for three Internet standards: RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses RFC 6762 Multicast DNS RFC 6763 DNS-Based Service Discovery WAC For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits: You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings. If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process. HomeKit For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK). Bluetooth LE If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below. Claiming the Default Route, Or Not? If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route. IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts. This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app. Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example. OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again. In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory. Acting as a Captive Network, or Not? If your accessory becomes the default route you must then decide whether to act like a captive network or not. IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle. For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network. In contrast, it’s more reasonable for a gateway accessory to act as a captive network. SSID Scanning Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says: iOS does not have a general-purpose API for Wi-Fi scanning It is not. Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it. It will not. Note this comment in the official docs: NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location. Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results. Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work. There is not. In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including: If you have a bound accessory, you might add WAC support, which makes this whole issue go away. In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit. You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code. You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below. You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results. Programmatically Joining a Network Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration. One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details. For examples of how to use this API, see: Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network. NEHotspotConfiguration Sample — Use this to explore the API in general. Secure Communication Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers. Revision History 2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices. 2025-06-19 Added a preliminary discussion of Wi-Fi Aware. 2024-09-12 Improved the discussion of AccessorySetupKit. 2024-07-16 Added a preliminary discussion of AccessorySetupKit. 2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
1.8k
Nov ’25
On Host Names
For important background information, read Extra-ordinary Networking before reading this. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" On Host Names I commonly see questions like How do I get the device’s host name? This question doesn’t make sense without more context. Apple systems have a variety of things that you might consider to be the host name: The user-assigned device name — This is a user-visible value, for example, Guy Smiley. People set this in Settings > General > About > Name. The local host name — This is a DNS name used by Bonjour, for example, guy-smiley.local. By default this is algorithmically derived from the user-assigned device name. On macOS, people can override this in Settings > General > Sharing > Local hostname. The reverse DNS name associated with the various IP addresses assigned to the device’s various network interfaces That last one is pretty much useless. You can’t get a single host name because there isn’t a single IP address. For more on that, see Don’t Try to Get the Device’s IP Address. The other two have well-defined answers, although those answers vary by platform. I’ll talk more about that below. Before getting to that, however, let’s look at the big picture. Big Picture The use cases for the user-assigned device name are pretty clear. I rarely see folks confused about that. Another use case for this stuff is that you’ve started a server and you want to tell the user how to connect to it. I discuss this in detail in Showing Connection Information in an iOS Server. However, most folks who run into problems like this do so because they’re suffering from one of the following misconceptions: The device has a DNS name. Its DNS name is unique. Its DNS name doesn’t change. Its DNS name is in some way useful for networking. Some of these may be true in some specific circumstances, but none of them are true in all circumstances. These issues are not unique to Apple platforms — if you look at the Posix spec for gethostname, it says nothing about DNS! — but folks tend to notice these problems more on Apple platforms because Apple devices are often deployed to highly dynamic network environments. So, before you start using the APIs discussed in this post, think carefully about your assumptions. And if you actually do want to work with DNS, there are two cases to consider: If you’re looking for the local host name, use the APIs discussed above. In other cases, it’s likely that the APIs in this post will not be helpful and you’d be better off focusing on DNS APIs [1]. [1] The API I recommend for this is DNS-SD. See the DNS section in TN3151 Choosing the right networking API. macOS To get the user-assigned device name, call the SCDynamicStoreCopyComputerName(_:_:) function. For example: let userAssignedDeviceName = SCDynamicStoreCopyComputerName(nil, nil) as String? To get the local host name, call the SCDynamicStoreCopyLocalHostName(_:) function. For example: let localHostName = SCDynamicStoreCopyLocalHostName(nil) as String? IMPORTANT This returns just the name label. To form a local host name, append .local.. Both routines return an optional result; code defensively! If you’re displaying these values to the user, use the System Configuration framework dynamic store notification mechanism to keep your UI up to date. iOS and Friends On iOS, iPadOS, tvOS, and visionOS, get the user-assigned device name from the name property on UIDevice. IMPORTANT Access to this is now restricted. For more on that, see the documentation for the com.apple.developer.device-information.user-assigned-device-name entitlement. There is no direct mechanism to get the local host name. Other APIs There are a wide variety of other APIs that purport to return the host name. These include: gethostname The name property on NSHost [1] The hostName property on NSProcessInfo (ProcessInfo in Swift) These are problematic for a number of reasons: They have a complex implementation that makes it hard to predict what value you’ll get back. They might end up trying to infer the host name from the network environment. The existing behaviour is hard to change due to compatibility concerns. Some of them are marked as to-be-deprecated. IMPORTANT The second issue is particularly problematic, because it involves synchronous DNS requests [2]. That’s slow in general. Worse yet, if the network environment is restricted in some way, these calls can be very slow, taking about 30 seconds to time out. Given these problems, it’s generally best to avoid calling these routines at all. [1] It also has a names property, which is a little closer to reality but still not particularly useful. [2] Actually, that’s not true for gethostname. Rather, that call just returns whatever was last set by sethostname. This is always fast. The System Configuration framework infrastructure calls sethostname to update the host name as the system state changes.
0
0
188
Mar ’25
Extra-ordinary Networking
Most apps perform ordinary network operations, like fetching an HTTP resource with URLSession and opening a TCP connection to a mail server with Network framework. These operations are not without their challenges, but they’re the well-trodden path. If your app performs ordinary networking, see TN3151 Choosing the right networking API for recommendations as to where to start. Some apps have extra-ordinary networking requirements. For example, apps that: Help the user configure a Wi-Fi accessory Require a connection to run over a specific interface Listen for incoming connections Building such an app is tricky because: Networking is hard in general. Apple devices support very dynamic networking, and your app has to work well in whatever environment it’s running in. Documentation for the APIs you need is tucked away in man pages and doc comments. In many cases you have to assemble these APIs in creative ways. If you’re developing an app with extra-ordinary networking requirements, this post is for you. Note If you have questions or comments about any of the topics discussed here, put them in a new thread here on DevForums. Make sure I see it by putting it in the App & System Services > Networking area. And feel free to add tags appropriate to the specific technology you’re using, like Foundation, CFNetwork, Network, or Network Extension. Links, Links, and More Links Each topic is covered in a separate post: The iOS Wi-Fi Lifecycle describes how iOS joins and leaves Wi-Fi networks. Understanding this is especially important if you’re building an app that works with a Wi-Fi accessory. Network Interface Concepts explains how Apple platforms manage network interfaces. If you’ve got this far, you definitely want to read this. Network Interface Techniques offers a high-level overview of some of the more common techniques you need when working with network interfaces. Network Interface APIs describes APIs and core techniques for working with network interfaces. It’s referenced by many other posts. Running an HTTP Request over WWAN explains why most apps should not force an HTTP request to run over WWAN, what they should do instead, and what to do if you really need that behaviour. If you’re building an iOS app with an embedded network server, see Showing Connection Information in an iOS Server for details on how to get the information to show to your user so they can connect to your server. Many folks run into trouble when they try to find the device’s IP address, or other seemingly simple things, like the name of the Wi-Fi interface. Don’t Try to Get the Device’s IP Address explains why these problems are hard, and offers alternative approaches that function correctly in all network environments. Similarly, folks also run into trouble when trying to get the host name. On Host Names explains why that’s more complex than you might think. If you’re working with broadcasts or multicasts, see Broadcasts and Multicasts, Hints and Tips. If you’re building an app that works with a Wi-Fi accessory, see Working with a Wi-Fi Accessory. If you’re trying to gather network interface statistics, see Network Interface Statistics. There are also some posts that are not part of this series but likely to be of interest if you’re working in this space: TN3179 Understanding local network privacy discusses the local network privacy feature. Calling BSD Sockets from Swift does what it says on the tin, that is, explains how to call BSD Sockets from Swift. When doing weird things with the network, you often find yourself having to use BSD Sockets, and that API is not easy to call from Swift. The code therein is primarily for the benefit of test projects, oh, and DevForums posts like these. TN3111 iOS Wi-Fi API overview is a critical resource if you’re doing Wi-Fi specific stuff on iOS. TLS For Accessory Developers tackles the tricky topic of how to communicate securely with a network-based accessory. A Peek Behind the NECP Curtain discusses NECP, a subsystem that control which programs have access to which network interfaces. Networking Resources has links to many other useful resources. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Revision History 2025-07-31 Added a link to A Peek Behind the NECP Curtain. 2025-03-28 Added a link to On Host Names. 2025-01-16 Added a link to Broadcasts and Multicasts, Hints and Tips. Updated the local network privacy link to point to TN3179. Made other minor editorial changes. 2024-04-30 Added a link to Network Interface Statistics. 2023-09-14 Added a link to TLS For Accessory Developers. 2023-07-23 First posted.
0
0
5.4k
Jul ’25
WiFi 6 MIMO and spatial audio support for CarPlay
On "Accessory Interface Specification CarPlay Addendum R10", it says that it is recommended that the accessory uses a MIMO (2x2) hardware configuration, does this imply that WiFi 5 and SISO (1X1) will be phased out in the near future? When will WiFi 6 MIMO (2x2) become mandatory? On "Accessory Interface Specification CarPlay Addendum R10", it says that Spatial Audio is mandatory. However, for aftermarket in-vehicle infotainment (IVI) system due to the number of speakers are less than 6, is it allowed not to support spatial audio for this type of aftermarket IVI system?
0
0
77
Jul ’25
NSURLSession’s Resume Rate Limiter
IMPORTANT The resume rate limiter is now covered by the official documentation. See Use background sessions efficiently within Downloading files in the background. So, the following is here purely for historical perspective. NSURLSession’s background session support on iOS includes a resume rate limiter. This limiter exists to prevent apps from abusing the background session support in order to run continuously in the background. It works as follows: nsurlsessiond (the daemon that does all the background session work) maintains a delay value for your app. It doubles that delay every time it resumes (or relaunches) your app. It resets that delay to 0 when the user brings your app to the front. It also resets the delay to 0 if the delay period elapses without it having resumed your app. When your app creates a new task while it is in the background, the task does not start until that delay has expired. To understand the impact of this, consider what happens when you download 10 resources. If you pass them to the background session all at once, you see something like this: Your app creates tasks 1 through 10 in the background session. nsurlsessiond starts working on the first few tasks. As tasks complete, nsurlsessiond starts working on subsequent ones. Eventually all the tasks complete and nsurlsessiond resumes your app. Now consider what happens if you only schedule one task at a time: Your app creates task 1. nsurlsessiond starts working on it. When it completes, nsurlsessiond resumes your app. Your app creates task 2. nsurlsessiond delays the start of task 2 a little bit. nsurlsessiond starts working on task 2. When it completes, nsurlsessiond resumes your app. Your app creates task 3. nsurlsessiond delays the start of task 3 by double the previous amount. nsurlsessiond starts working on task 3. When it completes, nsurlsessiond resumes your app. Steps 8 through 11 repeat, and each time the delay doubles. Eventually the delay gets so large that it looks like your app has stopped making progress. If you have a lot of tasks to run then you can mitigate this problem by starting tasks in batches. That is, rather than start just one task in step 1, you would start 100. This only helps up to a point. If you have thousands of tasks to run, you will eventually start seeing serious delays. In that case it’s much better to change your design to use fewer, larger transfers. Note All of the above applies to iOS 8 and later. Things worked differently in iOS 7. There’s a post on DevForums that explains the older approach. Finally, keep in mind that there may be other reasons for your task not starting. Specifically, if the task is flagged as discretionary (because you set the discretionary flag when creating the task’s session or because the task was started while your app was in the background), the task may be delayed for other reasons (low power, lack of Wi-Fi, and so on). Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" (r. 22323366)
0
0
13k
Jul ’25
Content filtering
Hello team, Would this mean that content filters intended for all browsing can only be implemented for managed devices using MDM? My goal would be to create a content filtering app for all users, regardless of if their device is managed/supervised. thanks.
0
0
40
2w